BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20875652)

  • 1. The toxicological interaction between ocean acidity and metals in coastal meiobenthic copepods.
    Pascal PY; Fleeger JW; Galvez F; Carman KR
    Mar Pollut Bull; 2010 Dec; 60(12):2201-8. PubMed ID: 20875652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trace metals in seawater and copepods in the ocean outfall area off the northern Taiwan coast.
    Fang TH; Hwang JS; Hsiao SH; Chen HY
    Mar Environ Res; 2006 Mar; 61(2):224-43. PubMed ID: 16324739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixtures of metals and polynuclear aromatic hydrocarbons elicit complex, nonadditive toxicological interactions in meiobenthic copepods.
    Fleeger JW; Gust KA; Marlborough SJ; Tita G
    Environ Toxicol Chem; 2007 Aug; 26(8):1677-85. PubMed ID: 17702342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A marine secondary producer respires and feeds more in a high CO2 ocean.
    Li W; Gao K
    Mar Pollut Bull; 2012 Apr; 64(4):699-703. PubMed ID: 22364924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of experimental CO2 leakage on solubility and transport of seven trace metals in seawater and sediment.
    Ardelan MV; Steinnes E; Lierhagen S; Linde SO
    Sci Total Environ; 2009 Dec; 407(24):6255-66. PubMed ID: 19800660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ocean acidification on copepods.
    Wang M; Jeong CB; Lee YH; Lee JS
    Aquat Toxicol; 2018 Mar; 196():17-24. PubMed ID: 29324394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO2 mitigation via capture and chemical conversion in seawater.
    Rau GH
    Environ Sci Technol; 2011 Feb; 45(3):1088-92. PubMed ID: 21189009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of elevated CO2 on the reproduction of two calanoid copepods.
    McConville K; Halsband C; Fileman ES; Somerfield PJ; Findlay HS; Spicer JI
    Mar Pollut Bull; 2013 Aug; 73(2):428-34. PubMed ID: 23490345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of raised CO2 concentration on the egg production rate and early development of two marine copepods (Acartia steueri and Acartia erythraea).
    Kurihara H; Shimode S; Shirayama Y
    Mar Pollut Bull; 2004 Nov; 49(9-10):721-7. PubMed ID: 15530515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ocean acidification on trace element accumulation in the early-life stages of squid Loligo vulgaris.
    Lacoue-Labarthe T; Réveillac E; Oberhänsli F; Teyssié JL; Jeffree R; Gattuso JP
    Aquat Toxicol; 2011 Sep; 105(1-2):166-76. PubMed ID: 21718660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of phenanthrene- and metal-contaminated sediment on the feeding activity of the Harpacticoid Copepod, Schizopera knabeni.
    Silva SJ; Carman KR; Fleeger JW; Marshall T; Marlborough SJ
    Arch Environ Contam Toxicol; 2009 Apr; 56(3):434-41. PubMed ID: 18704255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Ocean Acidification on Organic and Inorganic Speciation of Trace Metals.
    Stockdale A; Tipping E; Lofts S; Mortimer RJ
    Environ Sci Technol; 2016 Feb; 50(4):1906-13. PubMed ID: 26807813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations.
    Kurihara H; Ishimatsu A
    Mar Pollut Bull; 2008 Jun; 56(6):1086-90. PubMed ID: 18455195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Community-level response of coastal microbial biofilms to ocean acidification in a natural carbon dioxide vent ecosystem.
    Lidbury I; Johnson V; Hall-Spencer JM; Munn CB; Cunliffe M
    Mar Pollut Bull; 2012 May; 64(5):1063-6. PubMed ID: 22414852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO₂ induced seawater acidification.
    Stumpp M; Trübenbach K; Brennecke D; Hu MY; Melzner F
    Aquat Toxicol; 2012 Apr; 110-111():194-207. PubMed ID: 22343465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term effects of elevated CO₂ and temperature on the Arctic calanoid copepods Calanus glacialis and C. hyperboreus.
    Hildebrandt N; Niehoff B; Sartoris FJ
    Mar Pollut Bull; 2014 Mar; 80(1-2):59-70. PubMed ID: 24529340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benthic foraminifera show some resilience to ocean acidification in the northern Gulf of California, Mexico.
    Pettit LR; Hart MB; Medina-Sánchez AN; Smart CW; Rodolfo-Metalpa R; Hall-Spencer JM; Prol-Ledesma RM
    Mar Pollut Bull; 2013 Aug; 73(2):452-62. PubMed ID: 23473095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the impacts of CO2 leakage from subseabed storage: effects of metal accumulation and toxicity on the model benthic organism Ruditapes philippinarum.
    Rodríguez-Romero A; Jiménez-Tenorio N; Basallote MD; De Orte MR; Blasco J; Riba I
    Environ Sci Technol; 2014 Oct; 48(20):12292-301. PubMed ID: 25221911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional impacts of ocean acidification in an ecologically critical foundation species.
    Gaylord B; Hill TM; Sanford E; Lenz EA; Jacobs LA; Sato KN; Russell AD; Hettinger A
    J Exp Biol; 2011 Aug; 214(Pt 15):2586-94. PubMed ID: 21753053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater.
    Ytreberg E; Karlsson J; Eklund B
    Sci Total Environ; 2010 May; 408(12):2459-66. PubMed ID: 20347476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.