These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 20875666)
1. Chromium transport in an acidic waste contaminated subsurface medium: the role of reduction. Qafoku NP; Evan Dresel P; Ilton E; McKinley JP; Resch CT Chemosphere; 2010 Dec; 81(11):1492-500. PubMed ID: 20875666 [TBL] [Abstract][Full Text] [Related]
2. Pathways of aqueous Cr(VI) attenuation in a slightly alkaline oxic subsurface. Qafoku NP; Dresel PE; Mckinley JP; Liu C; Heald SM; Ainsworth CC; Phillips JL; Fruchter JS Environ Sci Technol; 2009 Feb; 43(4):1071-7. PubMed ID: 19320160 [TBL] [Abstract][Full Text] [Related]
3. In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids. Kantar C; Cetin Z; Demiray H J Hazard Mater; 2008 Nov; 159(2-3):287-93. PubMed ID: 18387738 [TBL] [Abstract][Full Text] [Related]
4. Enhanced abiotic reduction of Cr(VI) in a soil slurry system by natural biomaterial addition. Park D; Ahn CK; Kim YM; Yun YS; Park JM J Hazard Mater; 2008 Dec; 160(2-3):422-7. PubMed ID: 18434006 [TBL] [Abstract][Full Text] [Related]
5. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH. Gheju M; Iovi A; Balcu I J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460 [TBL] [Abstract][Full Text] [Related]
6. The role of iron in hexavalent chromium reduction by municipal landfill leachate. Li Y; Low GK; Scott JA; Amal R J Hazard Mater; 2009 Jan; 161(2-3):657-62. PubMed ID: 18486329 [TBL] [Abstract][Full Text] [Related]
7. Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: II. Binding of Cr(III) in EPS/soil system. Kantar C; Demiray H; Dogan NM Chemosphere; 2011 Mar; 82(10):1496-505. PubMed ID: 21094978 [TBL] [Abstract][Full Text] [Related]
8. Influence of various organic molecules on the reduction of hexavalent chromium mediated by zero-valent iron. Rivero-Huguet M; Marshall WD Chemosphere; 2009 Aug; 76(9):1240-8. PubMed ID: 19559460 [TBL] [Abstract][Full Text] [Related]
9. Rates of hexavalent chromium reduction in anoxic estuarine sediments: pH effects and the role of acid volatile sulfides. Graham AM; Bouwer EJ Environ Sci Technol; 2010 Jan; 44(1):136-42. PubMed ID: 20039744 [TBL] [Abstract][Full Text] [Related]
10. Development of a new Cr(VI)-biosorbent from agricultural biowaste. Park D; Lim SR; Yun YS; Park JM Bioresour Technol; 2008 Dec; 99(18):8810-8. PubMed ID: 18511265 [TBL] [Abstract][Full Text] [Related]
11. Removal of hexavalent chromium from acidic aqueous solutions using rice straw-derived carbon. Hsu NH; Wang SL; Liao YH; Huang ST; Tzou YM; Huang YM J Hazard Mater; 2009 Nov; 171(1-3):1066-70. PubMed ID: 19619940 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Geng B; Jin Z; Li T; Qi X Chemosphere; 2009 May; 75(6):825-30. PubMed ID: 19217139 [TBL] [Abstract][Full Text] [Related]
13. Reduction and immobilization of chromium(VI) by iron(II)-treated faujasite. Kiser JR; Manning BA J Hazard Mater; 2010 Feb; 174(1-3):167-74. PubMed ID: 19796874 [TBL] [Abstract][Full Text] [Related]
14. Oxidation-reduction transformations of chromium in aerobic soils and the role of electron-shuttling quinones. Brose DA; James BR Environ Sci Technol; 2010 Dec; 44(24):9438-44. PubMed ID: 21105643 [TBL] [Abstract][Full Text] [Related]
15. Tuning the surfaces of palladium nanoparticles for the catalytic conversion of Cr(VI) to Cr(III). K'Owino IO; Omole MA; Sadik OA J Environ Monit; 2007 Jul; 9(7):657-65. PubMed ID: 17607385 [TBL] [Abstract][Full Text] [Related]
16. Chromium geochemistry and bioaccumulation in sediments from the lower Hackensack River, New Jersey. Martello L; Fuchsman P; Sorensen M; Magar V; Wenning RJ Arch Environ Contam Toxicol; 2007 Oct; 53(3):337-50. PubMed ID: 17657462 [TBL] [Abstract][Full Text] [Related]
17. Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: I. Cr(III) complexation with EPS in aqueous solution. Kantar C; Demiray H; Dogan NM; Dodge CJ Chemosphere; 2011 Mar; 82(10):1489-95. PubMed ID: 21272912 [TBL] [Abstract][Full Text] [Related]
18. Chromium(VI) bioremoval by Pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination. Dogan NM; Kantar C; Gulcan S; Dodge CJ; Yilmaz BC; Mazmanci MA Environ Sci Technol; 2011 Mar; 45(6):2278-85. PubMed ID: 21319733 [TBL] [Abstract][Full Text] [Related]
19. Fe(III) photocatalytic reduction of Cr(VI) by low-molecular-weight organic acids with alpha-OH. Sun J; Mao JD; Gong H; Lan Y J Hazard Mater; 2009 Sep; 168(2-3):1569-74. PubMed ID: 19372002 [TBL] [Abstract][Full Text] [Related]
20. Removal of Cr(VI) from contaminated soil by electrokinetic remediation. Sawada A; Mori K; Tanaka S; Fukushima M; Tatsumi K Waste Manag; 2004; 24(5):483-90. PubMed ID: 15120432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]