These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 20875779)
21. The influence of catechol structure on the suicide-inactivation of tyrosinase. Ramsden CA; Stratford MR; Riley PA Org Biomol Chem; 2009 Sep; 7(17):3388-90. PubMed ID: 19675891 [TBL] [Abstract][Full Text] [Related]
22. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Ramsden CA; Riley PA Bioorg Med Chem; 2014 Apr; 22(8):2388-95. PubMed ID: 24656803 [TBL] [Abstract][Full Text] [Related]
23. Laccase--and not tyrosinase--is the enzyme responsible for quinone methide production from 2,6-dimethoxy-4-allyl phenol. Sugumaran M; Bolton JL Arch Biochem Biophys; 1998 May; 353(2):207-12. PubMed ID: 9606954 [TBL] [Abstract][Full Text] [Related]
24. Tyrosinase autoactivation and the chemistry of ortho-quinone amines. Land EJ; Ramsden CA; Riley PA Acc Chem Res; 2003 May; 36(5):300-8. PubMed ID: 12755639 [TBL] [Abstract][Full Text] [Related]
25. A substrate recycling assay for phenolic compounds using tyrosinase and NADH. Brown RS; Male KB; Luong JH Anal Biochem; 1994 Oct; 222(1):131-9. PubMed ID: 7856838 [TBL] [Abstract][Full Text] [Related]
26. [Monochlorophenols as enzyme substrates for the preparatory metabolism of phenol in Candida tropicalis yeasts]. Ivoĭlov VS; Karasevich IuN Mikrobiologiia; 1983; 52(6):956-61. PubMed ID: 6669081 [TBL] [Abstract][Full Text] [Related]
27. An integrated study of tyrosinase inhibition by rutin: progress using a computational simulation. Si YX; Yin SJ; Oh S; Wang ZJ; Ye S; Yan L; Yang JM; Park YD; Lee J; Qian GY J Biomol Struct Dyn; 2012; 29(5):999-1012. PubMed ID: 22292957 [TBL] [Abstract][Full Text] [Related]
28. A review on spectrophotometric methods for measuring the monophenolase and diphenolase activities of tyrosinase. García-Molina F; Muñoz JL; Varón R; Rodríguez-López JN; García-Cánovas F; Tudela J J Agric Food Chem; 2007 Nov; 55(24):9739-49. PubMed ID: 17958393 [TBL] [Abstract][Full Text] [Related]
29. The basicity of an active-site water molecule discriminates between tyrosinase and catechol oxidase activity. Matoba Y; Oda K; Muraki Y; Masuda T Int J Biol Macromol; 2021 Jul; 183():1861-1870. PubMed ID: 34089758 [TBL] [Abstract][Full Text] [Related]
30. Catalytic properties of an organic solvent-resistant tyrosinase from Streptomyces sp. REN-21 and its high-level production in E. coli. Ito M; Inouye K J Biochem; 2005 Oct; 138(4):355-62. PubMed ID: 16272129 [TBL] [Abstract][Full Text] [Related]
31. The effect of thiobarbituric acid on tyrosinase: inhibition kinetics and computational simulation. Yin SJ; Si YX; Wang ZJ; Wang SF; Oh S; Lee S; Sim SM; Yang JM; Qian GY; Lee J; Park YD J Biomol Struct Dyn; 2011 Dec; 29(3):463-70. PubMed ID: 22066533 [TBL] [Abstract][Full Text] [Related]
33. Investigation of binding-site homology between mushroom and bacterial tyrosinases by using aurones as effectors. Haudecoeur R; Gouron A; Dubois C; Jamet H; Lightbody M; Hardré R; Milet A; Bergantino E; Bubacco L; Belle C; Réglier M; Boumendjel A Chembiochem; 2014 Jun; 15(9):1325-33. PubMed ID: 24849818 [TBL] [Abstract][Full Text] [Related]
34. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Olivares C; Solano F Pigment Cell Melanoma Res; 2009 Dec; 22(6):750-60. PubMed ID: 19735457 [TBL] [Abstract][Full Text] [Related]
35. Tryptophan-to-dye fluorescence energy transfer applied to oxygen sensing by using type-3 copper proteins. Zauner G; Lonardi E; Bubacco L; Aartsma TJ; Canters GW; Tepper AW Chemistry; 2007; 13(25):7085-90. PubMed ID: 17577913 [TBL] [Abstract][Full Text] [Related]
36. Water purification through bioconversion of phenol compounds by tyrosinase and chemical adsorption by chitosan beads. Yamada K; Akiba Y; Shibuya T; Kashiwada A; Matsuda K; Hirata M Biotechnol Prog; 2005; 21(3):823-9. PubMed ID: 15932262 [TBL] [Abstract][Full Text] [Related]
37. Structural basis and mechanism of the inhibition of the type-3 copper protein tyrosinase from Streptomyces antibioticus by halide ions. Tepper AW; Bubacco L; Canters GW J Biol Chem; 2002 Aug; 277(34):30436-44. PubMed ID: 12048185 [TBL] [Abstract][Full Text] [Related]
38. Copper-Oxygen Dynamics in the Tyrosinase Mechanism. Fujieda N; Umakoshi K; Ochi Y; Nishikawa Y; Yanagisawa S; Kubo M; Kurisu G; Itoh S Angew Chem Int Ed Engl; 2020 Aug; 59(32):13385-13390. PubMed ID: 32356371 [TBL] [Abstract][Full Text] [Related]
39. A novel approach to gene therapy of albino hair in histoculture with a retroviral streptomyces tyrosinase gene. Zhao M; Saito N; Li L; Baranov E; Kondoh H; Mishima Y; Sugiyama M; Katsuoka K; Hoffman RM Pigment Cell Res; 2000 Oct; 13(5):345-51. PubMed ID: 11041211 [TBL] [Abstract][Full Text] [Related]
40. Elucidation of the tyrosinase/O Kipouros I; Stańczak A; Ginsbach JW; Andrikopoulos PC; Rulíšek L; Solomon EI Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2205619119. PubMed ID: 35939688 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]