These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 20876032)

  • 1. EEG control of a virtual helicopter in 3-dimensional space using intelligent control strategies.
    Royer AS; Doud AJ; Rose ML; He B
    IEEE Trans Neural Syst Rehabil Eng; 2010 Dec; 18(6):581-9. PubMed ID: 20876032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface.
    Doud AJ; Lucas JP; Pisansky MT; He B
    PLoS One; 2011; 6(10):e26322. PubMed ID: 22046274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A brain controlled wheelchair to navigate in familiar environments.
    Rebsamen B; Guan C; Zhang H; Wang C; Teo C; Ang MH; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2010 Dec; 18(6):590-8. PubMed ID: 20460212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-computer interfaces: Definitions and principles.
    Wolpaw JR; Millán JDR; Ramsey NF
    Handb Clin Neurol; 2020; 168():15-23. PubMed ID: 32164849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward smarter BCIs: extending BCIs through hybridization and intelligent control.
    Allison BZ; Leeb R; Brunner C; Müller-Putz GR; Bauernfeind G; Kelly JW; Neuper C
    J Neural Eng; 2012 Feb; 9(1):013001. PubMed ID: 22156029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring virtual environments with an EEG-based BCI through motor imagery.
    Leeb R; Scherer R; Keinrath C; Guger C; Pfurtscheller G
    Biomed Tech (Berl); 2005 Apr; 50(4):86-91. PubMed ID: 15884704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroencephalographic (EEG) control of three-dimensional movement.
    McFarland DJ; Sarnacki WA; Wolpaw JR
    J Neural Eng; 2010 Jun; 7(3):036007. PubMed ID: 20460690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Change in brain activity through virtual reality-based brain-machine communication in a chronic tetraplegic subject with muscular dystrophy.
    Hashimoto Y; Ushiba J; Kimura A; Liu M; Tomita Y
    BMC Neurosci; 2010 Sep; 11():117. PubMed ID: 20846418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An online EEG BCI based on covert visuospatial attention in absence of exogenous stimulation.
    Tonin L; Leeb R; Sobolewski A; Millán Jdel R
    J Neural Eng; 2013 Oct; 10(5):056007. PubMed ID: 23918205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Goal-recognition-based adaptive brain-computer interface for navigating immersive robotic systems.
    Abu-Alqumsan M; Ebert F; Peer A
    J Neural Eng; 2017 Jun; 14(3):036024. PubMed ID: 28294109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects.
    Blankertz B; Dornhege G; Krauledat M; Müller KR; Curio G
    Neuroimage; 2007 Aug; 37(2):539-50. PubMed ID: 17475513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exogenous and endogenous orienting of visuospatial attention in P300-guided brain computer interfaces: a pilot study on healthy participants.
    Marchetti M; Piccione F; Silvoni S; Priftis K
    Clin Neurophysiol; 2012 Apr; 123(4):774-9. PubMed ID: 21903462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological regulation of thinking: brain-computer interface (BCI) research.
    Birbaumer N; Weber C; Neuper C; Buch E; Haapen K; Cohen L
    Prog Brain Res; 2006; 159():369-91. PubMed ID: 17071243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast attainment of computer cursor control with noninvasively acquired brain signals.
    Bradberry TJ; Gentili RJ; Contreras-Vidal JL
    J Neural Eng; 2011 Jun; 8(3):036010. PubMed ID: 21493978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study.
    Jeunet C; Jahanpour E; Lotte F
    J Neural Eng; 2016 Jun; 13(3):036024. PubMed ID: 27172246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P300-based BCI mouse with genetically-optimized analogue control.
    Citi L; Poli R; Cinel C; Sepulveda F
    IEEE Trans Neural Syst Rehabil Eng; 2008 Feb; 16(1):51-61. PubMed ID: 18303806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurophysiological predictor of SMR-based BCI performance.
    Blankertz B; Sannelli C; Halder S; Hammer EM; Kübler A; Müller KR; Curio G; Dickhaus T
    Neuroimage; 2010 Jul; 51(4):1303-9. PubMed ID: 20303409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of loss of control on movement BCIs.
    Reuderink B; Poel M; Nijholt A
    IEEE Trans Neural Syst Rehabil Eng; 2011 Dec; 19(6):628-37. PubMed ID: 21984517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans.
    Wolpaw JR; McFarland DJ
    Proc Natl Acad Sci U S A; 2004 Dec; 101(51):17849-54. PubMed ID: 15585584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.