BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 20876199)

  • 1. Lactate per se improves the excitability of depolarized rat skeletal muscle by reducing the Cl- conductance.
    de Paoli FV; Ørtenblad N; Pedersen TH; Jørgensen R; Nielsen OB
    J Physiol; 2010 Dec; 588(Pt 23):4785-94. PubMed ID: 20876199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additive protective effects of the addition of lactic acid and adrenaline on excitability and force in isolated rat skeletal muscle depressed by elevated extracellular K+.
    de Paoli FV; Overgaard K; Pedersen TH; Nielsen OB
    J Physiol; 2007 Jun; 581(Pt 2):829-39. PubMed ID: 17347268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of transverse-tubular chloride conductance on excitability in skinned skeletal muscle fibres of rat and toad.
    Coonan JR; Lamb GD
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):551-64. PubMed ID: 9575303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased excitability of acidified skeletal muscle: role of chloride conductance.
    Pedersen TH; de Paoli F; Nielsen OB
    J Gen Physiol; 2005 Feb; 125(2):237-46. PubMed ID: 15684096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloride conductance in the transverse tubular system of rat skeletal muscle fibres: importance in excitation-contraction coupling and fatigue.
    Dutka TL; Murphy RM; Stephenson DG; Lamb GD
    J Physiol; 2008 Feb; 586(3):875-87. PubMed ID: 18033812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between membrane Cl- conductance and contractile endurance in isolated rat muscles.
    de Paoli FV; Broch-Lips M; Pedersen TH; Nielsen OB
    J Physiol; 2013 Jan; 591(2):531-45. PubMed ID: 23045345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of force induced by high extracellular [K+] in rat muscle: effect of temperature, lactic acid and beta2-agonist.
    Pedersen TH; Clausen T; Nielsen OB
    J Physiol; 2003 Aug; 551(Pt 1):277-86. PubMed ID: 12813152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of lactic acid and catecholamines on contractility in fast-twitch muscles exposed to hyperkalemia.
    Hansen AK; Clausen T; Nielsen OB
    Am J Physiol Cell Physiol; 2005 Jul; 289(1):C104-12. PubMed ID: 15743886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In isolated skeletal muscle, excitation may increase extracellular K+ 10-fold; how can contractility be maintained?
    Clausen T
    Exp Physiol; 2011 Mar; 96(3):356-68. PubMed ID: 21123362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protective effects of lactic acid on force production in rat skeletal muscle.
    Nielsen OB; de Paoli F; Overgaard K
    J Physiol; 2001 Oct; 536(Pt 1):161-6. PubMed ID: 11579166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of calcitonin gene-related peptide on rat soleus muscle excitability: mechanisms and physiological significance.
    Macdonald WA; Nielsen OB; Clausen T
    Am J Physiol Regul Integr Comp Physiol; 2008 Oct; 295(4):R1214-23. PubMed ID: 18650319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L(+)-lactate does not affect twitch and tetanic responses in mechanically skinned mammalian muscle fibres.
    Posterino GS; Dutka TL; Lamb GD
    Pflugers Arch; 2001 May; 442(2):197-203. PubMed ID: 11417214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactate and force production in skeletal muscle.
    Kristensen M; Albertsen J; Rentsch M; Juel C
    J Physiol; 2005 Jan; 562(Pt 2):521-6. PubMed ID: 15550457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relations between excitability and contractility in rat soleus muscle: role of the Na+-K+ pump and Na+/K+ gradients.
    Overgaard K; Nielsen OB; Flatman JA; Clausen T
    J Physiol; 1999 Jul; 518(Pt 1):215-25. PubMed ID: 10373703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: implications for fatigue.
    McKenna MJ; Bangsbo J; Renaud JM
    J Appl Physiol (1985); 2008 Jan; 104(1):288-95. PubMed ID: 17962569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of K+ channels in the force recovery elicited by Na+-K+ pump stimulation in Ba2+-paralysed rat skeletal muscle.
    Clausen T; Overgaard K
    J Physiol; 2000 Sep; 527 Pt 2(Pt 2):325-32. PubMed ID: 10970433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitation-induced exchange of Na+, K+, and Cl- in rat EDL muscle in vitro and in vivo: physiology and pathophysiology.
    Clausen T
    J Gen Physiol; 2013 Feb; 141(2):179-92. PubMed ID: 23319728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of purinergic receptor activation on Na+-K+ pump activity, excitability, and function in depolarized skeletal muscle.
    Broch-Lips M; Pedersen TH; Nielsen OB
    Am J Physiol Cell Physiol; 2010 Jun; 298(6):C1438-44. PubMed ID: 20457838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Na,K pumps in restoring contractility following loss of cell membrane integrity in rat skeletal muscle.
    Clausen T; Gissel H
    Acta Physiol Scand; 2005 Mar; 183(3):263-71. PubMed ID: 15743386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue-induced change in T-system excitability and its major cause in rat fast-twitch skeletal muscle in vivo.
    Watanabe D; Wada M
    J Physiol; 2020 Nov; 598(22):5195-5211. PubMed ID: 32833287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.