These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 20876335)
1. Impact of chlororespiration on non-photochemical quenching of chlorophyll fluorescence and on the regulation of the diadinoxanthin cycle in the diatom Thalassiosira pseudonana. Cruz S; Goss R; Wilhelm C; Leegood R; Horton P; Jakob T J Exp Bot; 2011 Jan; 62(2):509-19. PubMed ID: 20876335 [TBL] [Abstract][Full Text] [Related]
2. The importance of a highly active and DeltapH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae. Goss R; Ann Pinto E; Wilhelm C; Richter M J Plant Physiol; 2006 Oct; 163(10):1008-21. PubMed ID: 16971213 [TBL] [Abstract][Full Text] [Related]
3. The regulation of xanthophyll cycle activity and of non-photochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana. Grouneva I; Jakob T; Wilhelm C; Goss R Biochim Biophys Acta; 2009 Jul; 1787(7):929-38. PubMed ID: 19232316 [TBL] [Abstract][Full Text] [Related]
4. An optimized protocol for the preparation of oxygen-evolving thylakoid membranes from Cyclotella meneghiniana provides a tool for the investigation of diatom plastidic electron transport. Kansy M; Gurowietz A; Wilhelm C; Goss R BMC Plant Biol; 2017 Nov; 17(1):221. PubMed ID: 29178846 [TBL] [Abstract][Full Text] [Related]
5. A new multicomponent NPQ mechanism in the diatom Cyclotella meneghiniana. Grouneva I; Jakob T; Wilhelm C; Goss R Plant Cell Physiol; 2008 Aug; 49(8):1217-25. PubMed ID: 18587148 [TBL] [Abstract][Full Text] [Related]
6. The fine-tuning of NPQ in diatoms relies on the regulation of both xanthophyll cycle enzymes. Blommaert L; Chafai L; Bailleul B Sci Rep; 2021 Jun; 11(1):12750. PubMed ID: 34140542 [TBL] [Abstract][Full Text] [Related]
7. In diatoms, a transthylakoid proton gradient alone is not sufficient to induce a non-photochemical fluorescence quenching. Lavaud J; Rousseau B; Etienne AL FEBS Lett; 2002 Jul; 523(1-3):163-6. PubMed ID: 12123825 [TBL] [Abstract][Full Text] [Related]
8. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Lavaud J; Rousseau B; van Gorkom HJ; Etienne AL Plant Physiol; 2002 Jul; 129(3):1398-406. PubMed ID: 12114593 [TBL] [Abstract][Full Text] [Related]
9. Indications for chlororespiration in relation to light regime in the marine diatom Thalassiosira weissflogii. Dijkman NA; Kroon BM J Photochem Photobiol B; 2002 Apr; 66(3):179-87. PubMed ID: 11960727 [TBL] [Abstract][Full Text] [Related]
10. Enrichment of the light-harvesting complex in diadinoxanthin and implications for the nonphotochemical fluorescence quenching in diatoms. Lavaud J; Rousseau B; Etienne AL Biochemistry; 2003 May; 42(19):5802-8. PubMed ID: 12741838 [TBL] [Abstract][Full Text] [Related]
11. Spectral radiation dependent photoprotective mechanism in the diatom Pseudo-nitzschia multistriata. Brunet C; Chandrasekaran R; Barra L; Giovagnetti V; Corato F; Ruban AV PLoS One; 2014; 9(1):e87015. PubMed ID: 24475212 [TBL] [Abstract][Full Text] [Related]
12. The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis. Lepetit B; Gélin G; Lepetit M; Sturm S; Vugrinec S; Rogato A; Kroth PG; Falciatore A; Lavaud J New Phytol; 2017 Apr; 214(1):205-218. PubMed ID: 27870063 [TBL] [Abstract][Full Text] [Related]
13. Diadinoxanthin de-epoxidation as important factor in the short-term stabilization of diatom photosynthetic membranes exposed to different temperatures. Bojko M; Olchawa-Pajor M; Goss R; Schaller-Laudel S; Strzałka K; Latowski D Plant Cell Environ; 2019 Apr; 42(4):1270-1286. PubMed ID: 30362127 [TBL] [Abstract][Full Text] [Related]
14. High light stress triggers distinct proteomic responses in the marine diatom Thalassiosira pseudonana. Dong HP; Dong YL; Cui L; Balamurugan S; Gao J; Lu SH; Jiang T BMC Genomics; 2016 Dec; 17(1):994. PubMed ID: 27919227 [TBL] [Abstract][Full Text] [Related]
15. High light acclimation in the secondary plastids containing diatom Phaeodactylum tricornutum is triggered by the redox state of the plastoquinone pool. Lepetit B; Sturm S; Rogato A; Gruber A; Sachse M; Falciatore A; Kroth PG; Lavaud J Plant Physiol; 2013 Feb; 161(2):853-65. PubMed ID: 23209128 [TBL] [Abstract][Full Text] [Related]
16. Cadmium inhibits epoxidation of diatoxanthin to diadinoxanthin in the xanthophyll cycle of the marine diatom Phaeodactylum tricornutum. Bertrand M; Schoefs B; Siffel P; Rohacek K; Molnar I FEBS Lett; 2001 Nov; 508(1):153-6. PubMed ID: 11707287 [TBL] [Abstract][Full Text] [Related]
17. A model for describing the light response of the nonphotochemical quenching of chlorophyll fluorescence. Serôdio J; Lavaud J Photosynth Res; 2011 May; 108(1):61-76. PubMed ID: 21516348 [TBL] [Abstract][Full Text] [Related]
18. Photoprotection in the diatom Thalassiosira pseudonana: role of LI818-like proteins in response to high light stress. Zhu SH; Green BR Biochim Biophys Acta; 2010 Aug; 1797(8):1449-57. PubMed ID: 20388491 [TBL] [Abstract][Full Text] [Related]
19. Silencing of the violaxanthin de-epoxidase gene in the diatom Phaeodactylum tricornutum reduces diatoxanthin synthesis and non-photochemical quenching. Lavaud J; Materna AC; Sturm S; Vugrinec S; Kroth PG PLoS One; 2012; 7(5):e36806. PubMed ID: 22629333 [TBL] [Abstract][Full Text] [Related]
20. Molecular events accompanying aggregation-induced energy quenching in fucoxanthin-chlorophyll proteins. Alexandre MTA; Krüger TPJ; Pascal AA; Veremeienko V; Llansola-Portoles MJ; Gundermann K; van Grondelle R; Büchel C; Robert B Biochim Biophys Acta Bioenerg; 2024 Nov; 1865(4):149500. PubMed ID: 39074571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]