These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 20876335)
21. Evidence for a rebinding of antheraxanthin to the light-harvesting complex during the epoxidation reaction of the violaxanthin cycle. Goss R; Lepetit B; Wilhelm C J Plant Physiol; 2006 Mar; 163(5):585-90. PubMed ID: 16473664 [TBL] [Abstract][Full Text] [Related]
22. Isolation of fucoxanthin chlorophyll protein complexes of the centric diatom Thalassiosira pseudonana associated with the xanthophyll cycle enzyme diadinoxanthin de-epoxidase. Goss R; Volke D; Werner LE; Kunz R; Kansy M; Hoffmann R; Wilhelm C IUBMB Life; 2023 Jan; 75(1):66-76. PubMed ID: 35557488 [TBL] [Abstract][Full Text] [Related]
23. Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching. Roach T; Miller R; Aigner S; Kranner I Ann Bot; 2015 Sep; 116(4):519-27. PubMed ID: 25878139 [TBL] [Abstract][Full Text] [Related]
24. Supplementary ultraviolet-B radiation induces a rapid reversal of the diadinoxanthin cycle in the strong light-exposed diatom Phaeodactylum tricornutum. Mewes H; Richter M Plant Physiol; 2002 Nov; 130(3):1527-35. PubMed ID: 12428017 [TBL] [Abstract][Full Text] [Related]
25. The interrelationship between the lower oxygen limit, chlorophyll fluorescence and the xanthophyll cycle in plants. Wright AH; DeLong JM; Gunawardena AH; Prange RK Photosynth Res; 2011 Mar; 107(3):223-35. PubMed ID: 21290261 [TBL] [Abstract][Full Text] [Related]
26. The synthesis of NPQ-effective zeaxanthin depends on the presence of a transmembrane proton gradient and a slightly basic stromal side of the thylakoid membrane. Goss R; Opitz C; Lepetit B; Wilhelm C Planta; 2008 Nov; 228(6):999-1009. PubMed ID: 18679711 [TBL] [Abstract][Full Text] [Related]
27. Disentangling two non-photochemical quenching processes in Cyclotella meneghiniana by spectrally-resolved picosecond fluorescence at 77K. Chukhutsina VU; Büchel C; van Amerongen H Biochim Biophys Acta; 2014 Jun; 1837(6):899-907. PubMed ID: 24582663 [TBL] [Abstract][Full Text] [Related]
28. Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: evidence for a subunit involved in diadinoxanthin and diatoxanthin binding. Beer A; Gundermann K; Beckmann J; Büchel C Biochemistry; 2006 Oct; 45(43):13046-53. PubMed ID: 17059221 [TBL] [Abstract][Full Text] [Related]
29. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum. Giovagnetti V; Ruban AV Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):218-230. PubMed ID: 27989819 [TBL] [Abstract][Full Text] [Related]
30. Ultrafast fluorescence study on the location and mechanism of non-photochemical quenching in diatoms. Miloslavina Y; Grouneva I; Lambrev PH; Lepetit B; Goss R; Wilhelm C; Holzwarth AR Biochim Biophys Acta; 2009 Oct; 1787(10):1189-97. PubMed ID: 19486881 [TBL] [Abstract][Full Text] [Related]
31. Analyzing both the fast and the slow phases of chlorophyll a fluorescence and P700 absorbance changes in dark-adapted and preilluminated pea leaves using a Thylakoid Membrane model. Belyaeva NE; Bulychev AA; Riznichenko GY; Rubin AB Photosynth Res; 2019 Apr; 140(1):1-19. PubMed ID: 30810971 [TBL] [Abstract][Full Text] [Related]
32. Relaxation of cellular K Ahmad RA; Dietzel L Physiol Plant; 2017 Sep; 161(1):171-180. PubMed ID: 28664565 [TBL] [Abstract][Full Text] [Related]
33. The importance of grana stacking for xanthophyll cycle-dependent NPQ in the thylakoid membranes of higher plants. Goss R; Oroszi S; Wilhelm C Physiol Plant; 2007 Nov; 131(3):496-507. PubMed ID: 18251887 [TBL] [Abstract][Full Text] [Related]
34. The lipid dependence of diadinoxanthin de-epoxidation presents new evidence for a macrodomain organization of the diatom thylakoid membrane. Goss R; Nerlich J; Lepetit B; Schaller S; Vieler A; Wilhelm C J Plant Physiol; 2009 Nov; 166(17):1839-54. PubMed ID: 19604599 [TBL] [Abstract][Full Text] [Related]
35. The light-harvesting antenna of the diatom Phaeodactylum tricornutum. Evidence for a diadinoxanthin-binding subcomplex. Guglielmi G; Lavaud J; Rousseau B; Etienne AL; Houmard J; Ruban AV FEBS J; 2005 Sep; 272(17):4339-48. PubMed ID: 16128804 [TBL] [Abstract][Full Text] [Related]
36. Photosystem II cycle activity and alternative electron transport in the diatom Phaeodactylum tricornutum under dynamic light conditions and nitrogen limitation. Wagner H; Jakob T; Lavaud J; Wilhelm C Photosynth Res; 2016 May; 128(2):151-61. PubMed ID: 26650230 [TBL] [Abstract][Full Text] [Related]
37. Photoacclimation impacts the molecular features of photosystem supercomplexes in the centric diatom Thalassiosira pseudonana. Calvaruso C; Stefanidis K; Büchel C Biochim Biophys Acta Bioenerg; 2022 Oct; 1863(7):148589. PubMed ID: 35779585 [TBL] [Abstract][Full Text] [Related]
38. Energy dissipation pathways in Photosystem 2 of the diatom, Phaeodactylum tricornutum, under high-light conditions. Kuzminov FI; Gorbunov MY Photosynth Res; 2016 Feb; 127(2):219-35. PubMed ID: 26220363 [TBL] [Abstract][Full Text] [Related]
39. The chlorophyll a fluorescence induction curve in the green microalga Haematococcus pluvialis: further insight into the nature of the P-S-M fluctuation and its relationship with the "low-wave" phenomenon at steady-state. Fratamico A; Tocquin P; Franck F Photosynth Res; 2016 Jun; 128(3):271-85. PubMed ID: 26980274 [TBL] [Abstract][Full Text] [Related]
40. The diadinoxanthin diatoxanthin cycle induces structural rearrangements of the isolated FCP antenna complexes of the pennate diatom Phaeodactylum tricornutum. Schaller-Laudel S; Volke D; Redlich M; Kansy M; Hoffmann R; Wilhelm C; Goss R Plant Physiol Biochem; 2015 Nov; 96():364-76. PubMed ID: 26368016 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]