These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 20876533)

  • 1. Evolution and multiplicity of arginine decarboxylases in polyamine biosynthesis and essential role in Bacillus subtilis biofilm formation.
    Burrell M; Hanfrey CC; Murray EJ; Stanley-Wall NR; Michael AJ
    J Biol Chem; 2010 Dec; 285(50):39224-38. PubMed ID: 20876533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of ancestral L-ornithine and L-lysine decarboxylases reveals parallel, pseudoconvergent evolution of polyamine biosynthesis.
    Li B; Liang J; Hanfrey CC; Phillips MA; Michael AJ
    J Biol Chem; 2021 Oct; 297(4):101219. PubMed ID: 34560100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional classification of amino acid decarboxylases from the alanine racemase structural family by phylogenetic studies.
    Kidron H; Repo S; Johnson MS; Salminen TA
    Mol Biol Evol; 2007 Jan; 24(1):79-89. PubMed ID: 16997906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the two arginine decarboxylase (polyamine biosynthesis) paralogues of the endemic subantarctic cruciferous species Pringlea antiscorbutica and analysis of their differential expression during development and response to environmental stress.
    Hummel I; Gouesbet G; El Amrani A; Aïnouche A; Couée I
    Gene; 2004 Nov; 342(2):199-209. PubMed ID: 15527979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of Spermidine Content Resulting from Inactivation of Two Arginine Decarboxylases Increases Biofilm Formation in Synechocystis sp. Strain PCC 6803.
    Kera K; Nagayama T; Nanatani K; Saeki-Yamoto C; Tominaga A; Souma S; Miura N; Takeda K; Kayamori S; Ando E; Higashi K; Igarashi K; Uozumi N
    J Bacteriol; 2018 May; 200(9):. PubMed ID: 29440257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of polyamine biosynthesis in Escherichia coli by basic proteins.
    Heller JS; Rostomily R; Kyriakidis DA; Canellakis ES
    Proc Natl Acad Sci U S A; 1983 Sep; 80(17):5181-4. PubMed ID: 6351053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of substrate specificity within a diverse family of beta/alpha-barrel-fold basic amino acid decarboxylases: X-ray structure determination of enzymes with specificity for L-arginine and carboxynorspermidine.
    Deng X; Lee J; Michael AJ; Tomchick DR; Goldsmith EJ; Phillips MA
    J Biol Chem; 2010 Aug; 285(33):25708-19. PubMed ID: 20534592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution of a bacterial/plant polyamine biosynthesis pathway in Saccharomyces cerevisiae.
    Klein RD; Geary TG; Gibson AS; Favreau MA; Winterrowd CA; Upton SJ; Keithly JS; Zhu G; Malmberg RL; Martinez MP; Yarlett N
    Microbiology (Reading); 1999 Feb; 145 ( Pt 2)():301-307. PubMed ID: 10075412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity.
    Hanfrey C; Sommer S; Mayer MJ; Burtin D; Michael AJ
    Plant J; 2001 Sep; 27(6):551-60. PubMed ID: 11576438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of polyamine biosynthesis by antizyme and some recent developments relating the induction of polyamine biosynthesis to cell growth. Review.
    Canellakis ES; Kyriakidis DA; Rinehart CA; Huang SC; Panagiotidis C; Fong WF
    Biosci Rep; 1985 Mar; 5(3):189-204. PubMed ID: 3893559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crenarchaeal arginine decarboxylase evolved from an S-adenosylmethionine decarboxylase enzyme.
    Giles TN; Graham DE
    J Biol Chem; 2008 Sep; 283(38):25829-38. PubMed ID: 18650422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-translational and transcriptional regulation of polyamine biosynthesis in Escherichia coli.
    Panagiotidis CA; Huang SC; Canellakis ES
    Int J Biochem; 1994 Aug; 26(8):991-1001. PubMed ID: 8088419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA.
    Michael AJ; Furze JM; Rhodes MJ; Burtin D
    Biochem J; 1996 Feb; 314 ( Pt 1)(Pt 1):241-8. PubMed ID: 8660289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and translational regulation of the arginine decarboxylase gene in carnation (Dianthus caryophyllus L.).
    Chang KS; Lee SH; Hwang SB; Park KY
    Plant J; 2000 Oct; 24(1):45-56. PubMed ID: 11029703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae.
    Lee J; Sperandio V; Frantz DE; Longgood J; Camilli A; Phillips MA; Michael AJ
    J Biol Chem; 2009 Apr; 284(15):9899-907. PubMed ID: 19196710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning, sequencing, and molecular analysis of the acetoacetate decarboxylase gene region from Clostridium acetobutylicum.
    Gerischer U; Dürre P
    J Bacteriol; 1990 Dec; 172(12):6907-18. PubMed ID: 2254264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of arginine decarboxylase in transgenic plants.
    Burtin D; Michael AJ
    Biochem J; 1997 Jul; 325 ( Pt 2)(Pt 2):331-7. PubMed ID: 9230111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural modeling and environmental regulation of arginine decarboxylase in Synechocystis sp. PCC 6803.
    Jantaro S; Kidron H; Chesnel D; Incharoensakdi A; Mulo P; Salminen T; Mäenpää P
    Arch Microbiol; 2006 Feb; 184(6):397-406. PubMed ID: 16362287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship of the expression of the S20 and L34 ribosomal proteins to polyamine biosynthesis in Escherichia coli.
    Panagiotidis CA; Huang SC; Canellakis ES
    Int J Biochem Cell Biol; 1995 Feb; 27(2):157-68. PubMed ID: 7539334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response.
    Liu JH; Nada K; Honda C; Kitashiba H; Wen XP; Pang XM; Moriguchi T
    J Exp Bot; 2006; 57(11):2589-99. PubMed ID: 16825316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.