These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 20876633)
1. Mechanical properties and in vitro bioactivity of Ca5(PO4)2SiO4 bioceramic. Lu W; Duan W; Guo Y; Ning C J Biomater Appl; 2012 Feb; 26(6):637-50. PubMed ID: 20876633 [TBL] [Abstract][Full Text] [Related]
2. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics. Ni S; Chang J J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892 [TBL] [Abstract][Full Text] [Related]
3. In situ hydroxyapatite nanofiber growth on calcium borate silicate ceramics in SBF and its structural characteristics. Pu Y; Huang Y; Qi S; Chen C; Seo HJ Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():126-30. PubMed ID: 26117746 [TBL] [Abstract][Full Text] [Related]
4. In vitro bioactivity of novel tricalcium silicate ceramics. Zhao W; Chang J; Wang J; Zhai W; Wang Z J Mater Sci Mater Med; 2007 May; 18(5):917-23. PubMed ID: 17216580 [TBL] [Abstract][Full Text] [Related]
5. Cyclic silicate active site and stereochemical match for apatite nucleation on pseudowollastonite bioceramic-bone interfaces. Sahai N; Anseau M Biomaterials; 2005 Oct; 26(29):5763-70. PubMed ID: 15949543 [TBL] [Abstract][Full Text] [Related]
6. Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic. Wu C; Chang J; Wang J; Ni S; Zhai W Biomaterials; 2005 Jun; 26(16):2925-31. PubMed ID: 15603787 [TBL] [Abstract][Full Text] [Related]
7. In vitro hydroxyapatite forming ability and dissolution of tobermorite nanofibers. Lin K; Chang J; Cheng R Acta Biomater; 2007 Mar; 3(2):271-6. PubMed ID: 17234465 [TBL] [Abstract][Full Text] [Related]
8. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Xin R; Leng Y; Chen J; Zhang Q Biomaterials; 2005 Nov; 26(33):6477-86. PubMed ID: 15992923 [TBL] [Abstract][Full Text] [Related]
9. Assessment of natural and synthetic wollastonite as source for bioceramics preparation. Carrodeguas RG; De Aza AH; De Aza PN; Baudín C; Jiménez J; López-Bravo A; Pena P; De Aza S J Biomed Mater Res A; 2007 Nov; 83(2):484-95. PubMed ID: 17503534 [TBL] [Abstract][Full Text] [Related]
10. In vitro studies of composite bone filler based on poly(propylene fumarate) and biphasic α-tricalcium phosphate/hydroxyapatite ceramic powder. Wu CC; Yang KC; Yang SH; Lin MH; Kuo TF; Lin FH Artif Organs; 2012 Apr; 36(4):418-28. PubMed ID: 22145803 [TBL] [Abstract][Full Text] [Related]
11. Bioactive ceramic composites sintered from hydroxyapatite and silica at 1,200 degrees C: preparation, microstructures and in vitro bone-like layer growth. Li XW; Yasuda HY; Umakoshi Y J Mater Sci Mater Med; 2006 Jun; 17(6):573-81. PubMed ID: 16691357 [TBL] [Abstract][Full Text] [Related]
12. [Effects of simulated body fluid flowing rate on bone-like apatite formation on porous calcium phosphate ceramics]. Duan YR; Liu KW; Chen JY; Zhang XD Space Med Med Eng (Beijing); 2002 Jun; 15(3):203-7. PubMed ID: 12224554 [TBL] [Abstract][Full Text] [Related]
13. Effect of Mn-Zn ferrite on apatite-wollastonite glass-ceramic (A-W GC). Da Li G; Zhou da L; Pan TH; Chen GS; Lin Y; Mao M; Yan G Biomed Mater; 2009 Aug; 4(4):045001. PubMed ID: 19525575 [TBL] [Abstract][Full Text] [Related]
14. Beta-CaSiO3/beta-Ca3(PO4)2 composite materials for hard tissue repair: in vitro studies. Ni S; Lin K; Chang J; Chou L J Biomed Mater Res A; 2008 Apr; 85(1):72-82. PubMed ID: 17688291 [TBL] [Abstract][Full Text] [Related]
15. Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS). Gu YW; Khor KA; Cheang P Biomaterials; 2004 Aug; 25(18):4127-34. PubMed ID: 15046903 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid. Hirakata LM; Kon M; Asaoka K Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174 [TBL] [Abstract][Full Text] [Related]
17. Cytocompatibility and osteogenic activity of a novel calcium phosphate silicate bioceramic: Silicocarnotite. Duan W; Ning C; Tang T J Biomed Mater Res A; 2013 Jul; 101(7):1955-61. PubMed ID: 23225789 [TBL] [Abstract][Full Text] [Related]
18. Alkali-free bioactive glasses for bone tissue engineering: a preliminary investigation. Goel A; Kapoor S; Rajagopal RR; Pascual MJ; Kim HW; Ferreira JM Acta Biomater; 2012 Jan; 8(1):361-72. PubMed ID: 21925626 [TBL] [Abstract][Full Text] [Related]
19. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. El-Ghannam AR J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous mechanical property and biodegradation improvement of wollastonite bioceramic through magnesium dilute doping. Xie J; Yang X; Shao H; Ye J; He Y; Fu J; Gao C; Gou Z J Mech Behav Biomed Mater; 2016 Feb; 54():60-71. PubMed ID: 26426432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]