BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20876692)

  • 1. Reverse transcriptases can clamp together nucleic acids strands with two complementary bases at their 3'-termini for initiating DNA synthesis.
    Oz-Gleenberg I; Herschhorn A; Hizi A
    Nucleic Acids Res; 2011 Feb; 39(3):1042-53. PubMed ID: 20876692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate variations that affect the nucleic acid clamp activity of reverse transcriptases.
    Oz-Gleenberg I; Herzig E; Voronin N; Hizi A
    FEBS J; 2012 May; 279(10):1894-903. PubMed ID: 22443410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strand selections resulting from the combined template-independent DNA synthesis and clamp activities of HIV-1 reverse transcriptase.
    Oz-Gleenberg I; Hizi A
    Biochem Biophys Res Commun; 2011 May; 408(3):482-8. PubMed ID: 21527243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Template-primer binding affinity and RNase H cleavage specificity contribute to the strand transfer efficiency of HIV-1 reverse transcriptase.
    Luczkowiak J; Matamoros T; Menéndez-Arias L
    J Biol Chem; 2018 Aug; 293(35):13351-13363. PubMed ID: 29991591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between plus strand DNA synthesis removal of downstream segments of RNA by human immunodeficiency virus, murine leukemia virus and avian myeloblastoma virus reverse transcriptases.
    Fuentes GM; Fay PJ; Bambara RA
    Nucleic Acids Res; 1996 May; 24(9):1719-26. PubMed ID: 8649991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Similarities and differences in the RNase H activities of human immunodeficiency virus type 1 reverse transcriptase and Moloney murine leukemia virus reverse transcriptase.
    Gao HQ; Sarafianos SG; Arnold E; Hughes SH
    J Mol Biol; 1999 Dec; 294(5):1097-113. PubMed ID: 10600369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-directed DNA polymerase and strand displacement activity of the reverse transcriptase encoded by the R2 retrotransposon.
    Kurzynska-Kokorniak A; Jamburuthugoda VK; Bibillo A; Eickbush TH
    J Mol Biol; 2007 Nov; 374(2):322-33. PubMed ID: 17936300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that HIV-1 reverse transcriptase employs the DNA 3' end-directed primary/secondary RNase H cleavage mechanism during synthesis and strand transfer.
    Purohit V; Balakrishnan M; Kim B; Bambara RA
    J Biol Chem; 2005 Dec; 280(49):40534-43. PubMed ID: 16221683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template-switching mechanism of a group II intron-encoded reverse transcriptase and its implications for biological function and RNA-Seq.
    Lentzsch AM; Yao J; Russell R; Lambowitz AM
    J Biol Chem; 2019 Dec; 294(51):19764-19784. PubMed ID: 31712313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substitutions at Phe61 in the beta3-beta4 hairpin of HIV-1 reverse transcriptase reveal a role for the Fingers subdomain in strand displacement DNA synthesis.
    Fisher TS; Darden T; Prasad VR
    J Mol Biol; 2003 Jan; 325(3):443-59. PubMed ID: 12498795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Misincorporation by HIV-1 reverse transcriptase promotes recombination via strand transfer synthesis.
    Palaniappan C; Wisniewski M; Wu W; Fay PJ; Bambara RA
    J Biol Chem; 1996 Sep; 271(37):22331-8. PubMed ID: 8798393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of plus-strand primer selection, removal, and reutilization by retroviral reverse transcriptases.
    Schultz SJ; Zhang M; Kelleher CD; Champoux JJ
    J Biol Chem; 2000 Oct; 275(41):32299-309. PubMed ID: 10913435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Template-directed pausing of DNA synthesis by HIV-1 reverse transcriptase during polymerization of HIV-1 sequences in vitro.
    Klarmann GJ; Schauber CA; Preston BD
    J Biol Chem; 1993 May; 268(13):9793-802. PubMed ID: 7683663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations proximal to the minor groove-binding track of human immunodeficiency virus type 1 reverse transcriptase differentially affect utilization of RNA versus DNA as template.
    Fisher TS; Darden T; Prasad VR
    J Virol; 2003 May; 77(10):5837-45. PubMed ID: 12719577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Leu92 Mutant of HIV-1 Reverse Transcriptase with a Selective Deficiency in Strand Transfer Causes a Loss of Viral Replication.
    Herzig E; Voronin N; Kucherenko N; Hizi A
    J Virol; 2015 Aug; 89(16):8119-29. PubMed ID: 25995261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Template-independent DNA synthesis activity associated with the reverse transcriptase of the long terminal repeat retrotransposon Tf1.
    Oz-Gleenberg I; Herzig E; Hizi A
    FEBS J; 2012 Jan; 279(1):142-53. PubMed ID: 22035236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of template RNA structure on elongation by HIV-1 reverse transcriptase.
    Klasens BI; Huthoff HT; Das AT; Jeeninga RE; Berkhout B
    Biochim Biophys Acta; 1999 Mar; 1444(3):355-70. PubMed ID: 10095059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Requirements for the catalysis of strand transfer synthesis by retroviral DNA polymerases.
    Buiser RG; DeStefano JJ; Mallaber LM; Fay PJ; Bambara RA
    J Biol Chem; 1991 Jul; 266(20):13103-9. PubMed ID: 1712774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fidelity of the reverse transcriptases of human immunodeficiency viruses and murine leukemia virus, exhibited by the mispair extension frequencies, is sequence dependent and enzyme related.
    Bakhanashvili M; Hizi A
    FEBS Lett; 1993 Mar; 319(1-2):201-5. PubMed ID: 7681015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p53 enhances the fidelity of DNA synthesis by human immunodeficiency virus type 1 reverse transcriptase.
    Bakhanashvili M
    Oncogene; 2001 Nov; 20(52):7635-44. PubMed ID: 11753641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.