These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 20876796)
1. Portable filter-based microdevice for detection and characterization of circulating tumor cells. Lin HK; Zheng S; Williams AJ; Balic M; Groshen S; Scher HI; Fleisher M; Stadler W; Datar RH; Tai YC; Cote RJ Clin Cancer Res; 2010 Oct; 16(20):5011-8. PubMed ID: 20876796 [TBL] [Abstract][Full Text] [Related]
2. A cancer detection platform which measures telomerase activity from live circulating tumor cells captured on a microfilter. Xu T; Lu B; Tai YC; Goldkorn A Cancer Res; 2010 Aug; 70(16):6420-6. PubMed ID: 20663903 [TBL] [Abstract][Full Text] [Related]
3. Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. Zheng S; Lin H; Liu JQ; Balic M; Datar R; Cote RJ; Tai YC J Chromatogr A; 2007 Aug; 1162(2):154-61. PubMed ID: 17561026 [TBL] [Abstract][Full Text] [Related]
4. A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells. Fan X; Jia C; Yang J; Li G; Mao H; Jin Q; Zhao J Biosens Bioelectron; 2015 Sep; 71():380-386. PubMed ID: 25950932 [TBL] [Abstract][Full Text] [Related]
5. EpCAM-independent capture of circulating tumor cells with a 'universal CTC-chip'. Chikaishi Y; Yoneda K; Ohnaga T; Tanaka F Oncol Rep; 2017 Jan; 37(1):77-82. PubMed ID: 27840987 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells. Tang Y; Shi J; Li S; Wang L; Cayre YE; Chen Y Sci Rep; 2014 Aug; 4():6052. PubMed ID: 25116599 [TBL] [Abstract][Full Text] [Related]
7. High-performance size-based microdevice for the detection of circulating tumor cells from peripheral blood in rectal cancer patients. Sun W; Jia C; Huang T; Sheng W; Li G; Zhang H; Jing F; Jin Q; Zhao J; Li G; Zhang Z PLoS One; 2013; 8(9):e75865. PubMed ID: 24066187 [TBL] [Abstract][Full Text] [Related]
8. Prognostic Impact of Circulating Tumor Cell Detected Using a Novel Fluidic Cell Microarray Chip System in Patients with Breast Cancer. Sawada T; Araki J; Yamashita T; Masubuchi M; Chiyoda T; Yunokawa M; Hoshi K; Tao S; Yamamura S; Yatsushiro S; Abe K; Kataoka M; Shimoyama T; Maeda Y; Kuroi K; Tamura K; Sawazumi T; Minami H; Suda Y; Koizumi F EBioMedicine; 2016 Sep; 11():173-182. PubMed ID: 27495793 [TBL] [Abstract][Full Text] [Related]
9. Entrapment of Prostate Cancer Circulating Tumor Cells with a Sequential Size-Based Microfluidic Chip. Ren X; Foster BM; Ghassemi P; Strobl JS; Kerr BA; Agah M Anal Chem; 2018 Jun; 90(12):7526-7534. PubMed ID: 29790741 [TBL] [Abstract][Full Text] [Related]
10. Microfilter-Based Capture and Release of Viable Circulating Tumor Cells. Rawal S; Ao Z; Datar RH; Agarwal A Methods Mol Biol; 2017; 1634():93-105. PubMed ID: 28819843 [TBL] [Abstract][Full Text] [Related]
11. Highly Efficient Isolation of Circulating Tumor Cells Using a Simple Wedge-Shaped Microfluidic Device. Qin L; Zhou W; Zhang S; Cheng B; Wang S; Li S; Yang Y; Wang S; Liu K; Zhang N IEEE Trans Biomed Eng; 2019 Jun; 66(6):1536-1541. PubMed ID: 30307854 [TBL] [Abstract][Full Text] [Related]
12. A novel method for downstream characterization of breast cancer circulating tumor cells following CellSearch isolation. Frithiof H; Welinder C; Larsson AM; Rydén L; Aaltonen K J Transl Med; 2015 Apr; 13():126. PubMed ID: 25896421 [TBL] [Abstract][Full Text] [Related]
14. Functional characterization of circulating tumor cells with a prostate-cancer-specific microfluidic device. Kirby BJ; Jodari M; Loftus MS; Gakhar G; Pratt ED; Chanel-Vos C; Gleghorn JP; Santana SM; Liu H; Smith JP; Navarro VN; Tagawa ST; Bander NH; Nanus DM; Giannakakou P PLoS One; 2012; 7(4):e35976. PubMed ID: 22558290 [TBL] [Abstract][Full Text] [Related]
15. SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter. Kim MS; Sim TS; Kim YJ; Kim SS; Jeong H; Park JM; Moon HS; Kim SI; Gurel O; Lee SS; Lee JG; Park JC Lab Chip; 2012 Aug; 12(16):2874-80. PubMed ID: 22684249 [TBL] [Abstract][Full Text] [Related]
16. Feasibility of a novel one-stop ISET device to capture CTCs and its clinical application. Chen F; Wang S; Fang Y; Zheng L; Zhi X; Cheng B; Chen Y; Zhang C; Shi D; Song H; Cai C; Zhou P; Xiong B Oncotarget; 2017 Jan; 8(2):3029-3041. PubMed ID: 27935872 [TBL] [Abstract][Full Text] [Related]
17. Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip. Huang T; Jia CP; Jun-Yang ; Sun WJ; Wang WT; Zhang HL; Cong H; Jing FX; Mao HJ; Jin QH; Zhang Z; Chen YJ; Li G; Mao GX; Zhao JL Biosens Bioelectron; 2014 Jan; 51():213-8. PubMed ID: 23962709 [TBL] [Abstract][Full Text] [Related]
18. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Stott SL; Hsu CH; Tsukrov DI; Yu M; Miyamoto DT; Waltman BA; Rothenberg SM; Shah AM; Smas ME; Korir GK; Floyd FP; Gilman AJ; Lord JB; Winokur D; Springer S; Irimia D; Nagrath S; Sequist LV; Lee RJ; Isselbacher KJ; Maheswaran S; Haber DA; Toner M Proc Natl Acad Sci U S A; 2010 Oct; 107(43):18392-7. PubMed ID: 20930119 [TBL] [Abstract][Full Text] [Related]
19. Cytometric characterization of circulating tumor cells captured by microfiltration and their correlation to the CellSearch(®) CTC test. Adams DL; Stefansson S; Haudenschild C; Martin SS; Charpentier M; Chumsri S; Cristofanilli M; Tang CM; Alpaugh RK Cytometry A; 2015 Feb; 87(2):137-44. PubMed ID: 25515318 [TBL] [Abstract][Full Text] [Related]
20. An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells. Warkiani ME; Khoo BL; Tan DS; Bhagat AA; Lim WT; Yap YS; Lee SC; Soo RA; Han J; Lim CT Analyst; 2014 Jul; 139(13):3245-55. PubMed ID: 24840240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]