BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 20877149)

  • 1. Development of novel micro swirl mixer for producing fine metal oxide nanoparticles by continuous supercritical hydrothermal method.
    Kawasaki S; Sue K; Ookawara R; Wakashima Y; Suzuki A
    J Oleo Sci; 2010; 59(10):557-62. PubMed ID: 20877149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixing Performance of a 3D Micro T-Mixer with Swirl-Inducing Inlets and Rectangular Constriction.
    Zhang J; Luo X
    Micromachines (Basel); 2018 Apr; 9(5):. PubMed ID: 30424132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of large-scale manufacturing of biopolymeric and lipid nanoparticles using microfluidic swirl mixers.
    Tomeh MA; Mansor MH; Hadianamrei R; Sun W; Zhao X
    Int J Pharm; 2022 May; 620():121762. PubMed ID: 35472511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel microfluidic swirl mixers for scalable formulation of curcumin loaded liposomes for cancer therapy.
    Xu R; Tomeh MA; Ye S; Zhang P; Lv S; You R; Wang N; Zhao X
    Int J Pharm; 2022 Jun; 622():121857. PubMed ID: 35623489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of Fluorescent Polymer Nanoparticles Using Different Microfluidic Mixers.
    Chen H; Celik AE; Mutschler A; Combes A; Runser A; Klymchenko AS; Lecommandoux S; Serra CA; Reisch A
    Langmuir; 2022 Jul; 38(26):7945-7955. PubMed ID: 35731957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixing monoclonal antibody formulations using bottom-mounted mixers: impact of mechanism and design on drug product quality.
    Gikanga B; Chen Y; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2015; 69(2):284-96. PubMed ID: 25868994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of turbulent tangential micro-mixers that mix liquids on the nanosecond time scale.
    Mitic S; van Nieuwkasteele JW; van den Berg A; de Vries S
    Anal Biochem; 2015 Jan; 469():19-26. PubMed ID: 25447461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the relative performance of a confined impinging jets mixer and a multi-inlet vortex mixer for curcumin nanoparticle production.
    Chow SF; Sun CC; Chow AH
    Eur J Pharm Biopharm; 2014 Oct; 88(2):462-71. PubMed ID: 25016977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical and Experimental Study on Mixing Performances of Simple and Vortex Micro T-Mixers.
    Ansari MA; Kim KY; Kim SM
    Micromachines (Basel); 2018 Apr; 9(5):. PubMed ID: 30424137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous Production of Water-Based UV-Curable Polyurethane Dispersions Using Static Mixers and a Rotor-Stator Mixer.
    Gobert SRL; Vancleef A; Clercx S; Braeken L; Thomassen LCJ
    ACS Omega; 2021 Oct; 6(40):25884-25891. PubMed ID: 34660951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processing Impact on Monoclonal Antibody Drug Products: Protein Subvisible Particulate Formation Induced by Grinding Stress.
    Gikanga B; Eisner DR; Ovadia R; Day ES; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2017; 71(3):172-188. PubMed ID: 27789805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel spiral infinity reactor for continuous hydrothermal synthesis of nanoparticles.
    Pukkella AK; Nadimpalli NRV; Runkana V; Subramanian S
    Sci Rep; 2022 May; 12(1):8616. PubMed ID: 35597787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation and PEPT measurements of a 3D conical helical-blade mixer: a high potential solids mixer for solid-state fermentation.
    Schutyser MA; Briels WJ; Rinzema A; Boom RM
    Biotechnol Bioeng; 2003 Oct; 84(1):29-39. PubMed ID: 12910540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of a microfluidic mixer for studying protein folding kinetics.
    Hertzog DE; Ivorra B; Mohammadi B; Bakajin O; Santiago JG
    Anal Chem; 2006 Jul; 78(13):4299-306. PubMed ID: 16808436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetically driven agitation in a tube mixer affords clog-resistant fast mixing independent of linear velocity.
    Dolman SJ; Nyrop JL; Kuethe JT
    J Org Chem; 2011 Feb; 76(3):993-6. PubMed ID: 21235265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixing characteristics of mixers in flow analysis. Application to two-dimensional detection in ion chromatography.
    Liao H; Dasgupta PK; Srinivasan K; Liu Y
    Anal Chem; 2015 Jan; 87(1):793-800. PubMed ID: 25426864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel.
    Lin YC; Chung YC; Wu CY
    Biomed Microdevices; 2007 Apr; 9(2):215-21. PubMed ID: 17165126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustically enhanced microfluidic mixer to synthesize highly uniform nanodrugs without the addition of stabilizers.
    Le NHA; Van Phan H; Yu J; Chan HK; Neild A; Alan T
    Int J Nanomedicine; 2018; 13():1353-1359. PubMed ID: 29563792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaotic mixing of granular materials in two-dimensional tumbling mixers.
    Khakhar DV; McCarthy JJ; Gilchrist JF; Ottino JM
    Chaos; 1999 Mar; 9(1):195-205. PubMed ID: 12779813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Horseshoe lamination mixer (HLM) sets new standards in the production of monodisperse lipid nanoparticles.
    Erfle P; Riewe J; Cai S; Bunjes H; Dietzel A
    Lab Chip; 2022 Aug; 22(16):3025-3044. PubMed ID: 35829631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.