These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 20877149)
1. Development of novel micro swirl mixer for producing fine metal oxide nanoparticles by continuous supercritical hydrothermal method. Kawasaki S; Sue K; Ookawara R; Wakashima Y; Suzuki A J Oleo Sci; 2010; 59(10):557-62. PubMed ID: 20877149 [TBL] [Abstract][Full Text] [Related]
2. Mixing Performance of a 3D Micro T-Mixer with Swirl-Inducing Inlets and Rectangular Constriction. Zhang J; Luo X Micromachines (Basel); 2018 Apr; 9(5):. PubMed ID: 30424132 [TBL] [Abstract][Full Text] [Related]
3. Optimization of large-scale manufacturing of biopolymeric and lipid nanoparticles using microfluidic swirl mixers. Tomeh MA; Mansor MH; Hadianamrei R; Sun W; Zhao X Int J Pharm; 2022 May; 620():121762. PubMed ID: 35472511 [TBL] [Abstract][Full Text] [Related]
4. Novel microfluidic swirl mixers for scalable formulation of curcumin loaded liposomes for cancer therapy. Xu R; Tomeh MA; Ye S; Zhang P; Lv S; You R; Wang N; Zhao X Int J Pharm; 2022 Jun; 622():121857. PubMed ID: 35623489 [TBL] [Abstract][Full Text] [Related]
5. Assembly of Fluorescent Polymer Nanoparticles Using Different Microfluidic Mixers. Chen H; Celik AE; Mutschler A; Combes A; Runser A; Klymchenko AS; Lecommandoux S; Serra CA; Reisch A Langmuir; 2022 Jul; 38(26):7945-7955. PubMed ID: 35731957 [TBL] [Abstract][Full Text] [Related]
6. Mixing monoclonal antibody formulations using bottom-mounted mixers: impact of mechanism and design on drug product quality. Gikanga B; Chen Y; Stauch OB; Maa YF PDA J Pharm Sci Technol; 2015; 69(2):284-96. PubMed ID: 25868994 [TBL] [Abstract][Full Text] [Related]
7. Design of turbulent tangential micro-mixers that mix liquids on the nanosecond time scale. Mitic S; van Nieuwkasteele JW; van den Berg A; de Vries S Anal Biochem; 2015 Jan; 469():19-26. PubMed ID: 25447461 [TBL] [Abstract][Full Text] [Related]
8. Assessment of the relative performance of a confined impinging jets mixer and a multi-inlet vortex mixer for curcumin nanoparticle production. Chow SF; Sun CC; Chow AH Eur J Pharm Biopharm; 2014 Oct; 88(2):462-71. PubMed ID: 25016977 [TBL] [Abstract][Full Text] [Related]
9. Numerical and Experimental Study on Mixing Performances of Simple and Vortex Micro T-Mixers. Ansari MA; Kim KY; Kim SM Micromachines (Basel); 2018 Apr; 9(5):. PubMed ID: 30424137 [TBL] [Abstract][Full Text] [Related]
10. Continuous Production of Water-Based UV-Curable Polyurethane Dispersions Using Static Mixers and a Rotor-Stator Mixer. Gobert SRL; Vancleef A; Clercx S; Braeken L; Thomassen LCJ ACS Omega; 2021 Oct; 6(40):25884-25891. PubMed ID: 34660951 [TBL] [Abstract][Full Text] [Related]
11. Processing Impact on Monoclonal Antibody Drug Products: Protein Subvisible Particulate Formation Induced by Grinding Stress. Gikanga B; Eisner DR; Ovadia R; Day ES; Stauch OB; Maa YF PDA J Pharm Sci Technol; 2017; 71(3):172-188. PubMed ID: 27789805 [TBL] [Abstract][Full Text] [Related]
12. A novel spiral infinity reactor for continuous hydrothermal synthesis of nanoparticles. Pukkella AK; Nadimpalli NRV; Runkana V; Subramanian S Sci Rep; 2022 May; 12(1):8616. PubMed ID: 35597787 [TBL] [Abstract][Full Text] [Related]
13. Numerical simulation and PEPT measurements of a 3D conical helical-blade mixer: a high potential solids mixer for solid-state fermentation. Schutyser MA; Briels WJ; Rinzema A; Boom RM Biotechnol Bioeng; 2003 Oct; 84(1):29-39. PubMed ID: 12910540 [TBL] [Abstract][Full Text] [Related]
14. Optimization of a microfluidic mixer for studying protein folding kinetics. Hertzog DE; Ivorra B; Mohammadi B; Bakajin O; Santiago JG Anal Chem; 2006 Jul; 78(13):4299-306. PubMed ID: 16808436 [TBL] [Abstract][Full Text] [Related]
15. Magnetically driven agitation in a tube mixer affords clog-resistant fast mixing independent of linear velocity. Dolman SJ; Nyrop JL; Kuethe JT J Org Chem; 2011 Feb; 76(3):993-6. PubMed ID: 21235265 [TBL] [Abstract][Full Text] [Related]
16. Mixing characteristics of mixers in flow analysis. Application to two-dimensional detection in ion chromatography. Liao H; Dasgupta PK; Srinivasan K; Liu Y Anal Chem; 2015 Jan; 87(1):793-800. PubMed ID: 25426864 [TBL] [Abstract][Full Text] [Related]
17. Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel. Lin YC; Chung YC; Wu CY Biomed Microdevices; 2007 Apr; 9(2):215-21. PubMed ID: 17165126 [TBL] [Abstract][Full Text] [Related]
18. Acoustically enhanced microfluidic mixer to synthesize highly uniform nanodrugs without the addition of stabilizers. Le NHA; Van Phan H; Yu J; Chan HK; Neild A; Alan T Int J Nanomedicine; 2018; 13():1353-1359. PubMed ID: 29563792 [TBL] [Abstract][Full Text] [Related]
19. Chaotic mixing of granular materials in two-dimensional tumbling mixers. Khakhar DV; McCarthy JJ; Gilchrist JF; Ottino JM Chaos; 1999 Mar; 9(1):195-205. PubMed ID: 12779813 [TBL] [Abstract][Full Text] [Related]
20. Horseshoe lamination mixer (HLM) sets new standards in the production of monodisperse lipid nanoparticles. Erfle P; Riewe J; Cai S; Bunjes H; Dietzel A Lab Chip; 2022 Aug; 22(16):3025-3044. PubMed ID: 35829631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]