BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 2087784)

  • 21. Centromere structure and function in neoplasia.
    Vig BK; Sternes KL; Paweletz N
    Cancer Genet Cytogenet; 1989 Dec; 43(2):151-78. PubMed ID: 2688870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Centromere sliding on a mammalian chromosome.
    Purgato S; Belloni E; Piras FM; Zoli M; Badiale C; Cerutti F; Mazzagatti A; Perini G; Della Valle G; Nergadze SG; Sullivan KF; Raimondi E; Rocchi M; Giulotto E
    Chromosoma; 2015 Jun; 124(2):277-87. PubMed ID: 25413176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extraordinary Sequence Diversity and Promiscuity of Centromeric Satellites in the Legume Tribe Fabeae.
    Ávila Robledillo L; Neumann P; Koblížková A; Novák P; Vrbová I; Macas J
    Mol Biol Evol; 2020 Aug; 37(8):2341-2356. PubMed ID: 32259249
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Telomere replication, kinetochore organizers, and satellite DNA evolution.
    Holmquist GP; Dancis B
    Proc Natl Acad Sci U S A; 1979 Sep; 76(9):4566-70. PubMed ID: 291989
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and functional dynamics of human centromeric chromatin.
    Schueler MG; Sullivan BA
    Annu Rev Genomics Hum Genet; 2006; 7():301-13. PubMed ID: 16756479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two extended arrays of a satellite DNA sequence at the centromere and at the short-arm telomere of Chinese hamster chromosome 5.
    Faravelli M; Moralli D; Bertoni L; Attolini C; Chernova O; Raimondi E; Giulotto E
    Cytogenet Cell Genet; 1998; 83(3-4):281-6. PubMed ID: 10072604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-color hybridization with high complexity chromosome-specific probes and a degenerate alpha satellite probe DNA allows unambiguous discrimination between symmetrical and asymmetrical translocations.
    Weier HU; Lucas JN; Poggensee M; Segraves R; Pinkel D; Gray JW
    Chromosoma; 1991 Jul; 100(6):371-6. PubMed ID: 1893794
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Centromere structure and function in budding and fission yeasts.
    Carbon J; Clarke L
    New Biol; 1990 Jan; 2(1):10-9. PubMed ID: 2078550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromosome-specific alpha-satellite DNA from the centromere of chimpanzee chromosome 4.
    Haaf T; Willard HF
    Chromosoma; 1997 Sep; 106(4):226-32. PubMed ID: 9254724
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ analysis of centromeric satellite DNA segregating in Mus species crosses.
    Matsuda Y; Chapman VM
    Mamm Genome; 1991; 1(2):71-7. PubMed ID: 1799790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mouse satellite DNA, centromere structure, and sister chromatid pairing.
    Lica LM; Narayanswami S; Hamkalo BA
    J Cell Biol; 1986 Oct; 103(4):1145-51. PubMed ID: 2429969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A stable marker chromosome with a cryptic centromere: evidence for centromeric sequences associated with an inverted duplication.
    Sacchi N; Magnani I; Fuhrman-Conti AM; Monard SP; Darfler M
    Cytogenet Cell Genet; 1996; 73(1-2):123-9. PubMed ID: 8646879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neocentromeres and alpha satellite: a proposed structural code for functional human centromere DNA.
    Koch J
    Hum Mol Genet; 2000 Jan; 9(2):149-54. PubMed ID: 10607825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organization and evolution of Gorilla centromeric DNA from old strategies to new approaches.
    Catacchio CR; Ragone R; Chiatante G; Ventura M
    Sci Rep; 2015 Sep; 5():14189. PubMed ID: 26387916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution of long centromeres in fire ants.
    Huang YC; Lee CC; Kao CY; Chang NC; Lin CC; Shoemaker D; Wang J
    BMC Evol Biol; 2016 Sep; 16():189. PubMed ID: 27628313
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly conserved repetitive DNA sequences are present at human centromeres.
    Grady DL; Ratliff RL; Robinson DL; McCanlies EC; Meyne J; Moyzis RK
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1695-9. PubMed ID: 1542662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag.
    Rudd MK; Mays RW; Schwartz S; Willard HF
    Mol Cell Biol; 2003 Nov; 23(21):7689-97. PubMed ID: 14560014
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scaffold attachment regions in centromere-associated DNA.
    Strissel PL; Espinosa R; Rowley JD; Swift H
    Chromosoma; 1996 Aug; 105(2):122-33. PubMed ID: 8753702
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The chromosomal distribution and organization of sheep satellite I and II centromeric DNA using characterized sheep-hamster somatic cell hybrids.
    Burkin DJ; Broad TE; Jones C
    Chromosome Res; 1996 Jan; 4(1):49-55. PubMed ID: 8653269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequence of centromere separation. Minor satellite DNA does not influence separation of inactive centromeres in transformed cells of mouse.
    Vig BK; Paweletz N
    Cancer Genet Cytogenet; 1993 Oct; 70(1):31-8. PubMed ID: 8221610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.