BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 20878194)

  • 1. Polysaccharide and glycoprotein distribution in the epidermis of cotton ovules during early fiber initiation and growth.
    Bowling AJ; Vaughn KC; Turley RB
    Protoplasma; 2011 Jul; 248(3):579-90. PubMed ID: 20878194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development.
    Ruan YL; Llewellyn DJ; Furbank RT
    Plant Cell; 2003 Apr; 15(4):952-64. PubMed ID: 12671090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue-like bundles.
    Singh B; Avci U; Eichler Inwood SE; Grimson MJ; Landgraf J; Mohnen D; Sørensen I; Wilkerson CG; Willats WG; Haigler CH
    Plant Physiol; 2009 Jun; 150(2):684-99. PubMed ID: 19369592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GbPDF1 is involved in cotton fiber initiation via the core cis-element HDZIP2ATATHB2.
    Deng F; Tu L; Tan J; Li Y; Nie Y; Zhang X
    Plant Physiol; 2012 Feb; 158(2):890-904. PubMed ID: 22123900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arabinogalactan protein-rich cell walls, paramural deposits and ergastic globules define the hyaline bodies of rhinanthoid Orobanchaceae haustoria.
    Pielach A; Leroux O; Domozych DS; Knox JP; Popper ZA
    Ann Bot; 2014 Oct; 114(6):1359-73. PubMed ID: 25024256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycoproteome of elongating cotton fiber cells.
    Kumar S; Kumar K; Pandey P; Rajamani V; Padmalatha KV; Dhandapani G; Kanakachari M; Leelavathi S; Kumar PA; Reddy VS
    Mol Cell Proteomics; 2013 Dec; 12(12):3677-89. PubMed ID: 24019148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G-fibre cell wall development in willow stems during tension wood induction.
    Gritsch C; Wan Y; Mitchell RA; Shewry PR; Hanley SJ; Karp A
    J Exp Bot; 2015 Oct; 66(20):6447-59. PubMed ID: 26220085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin.
    Ruan YL; Llewellyn DJ; Furbank RT
    Plant Cell; 2001 Jan; 13(1):47-60. PubMed ID: 11158528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of
    Geng C; Li L; Han S; Jia M; Jiang J
    Plants (Basel); 2023 Oct; 12(20):. PubMed ID: 37895992
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Zhao G; Li W; Xu M; Shao L; Sun M; Tu L
    Mol Breed; 2024 Jun; 44(6):38. PubMed ID: 38766511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic and Morpho-Physiological Differences among Transgenic and No-Transgenic Cotton Cultivars.
    Liu L; Wang D; Hua J; Kong X; Wang X; Wang J; Si A; Zhao F; Liu W; Yu Y; Chen Z
    Plants (Basel); 2023 Sep; 12(19):. PubMed ID: 37836177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2-NBDG Uptake in
    Shamshoum M; Kuperman OA; Shadmi SK; Itkin M; Malitsky S; Natalio F
    Front Plant Sci; 2023; 14():1242150. PubMed ID: 37818315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematically and Comprehensively Understanding the Regulation of Cotton Fiber Initiation: A Review.
    Zhai Z; Zhang K; Fang Y; Yang Y; Cao X; Liu L; Tian Y
    Plants (Basel); 2023 Nov; 12(21):. PubMed ID: 37960127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harnessing precursor-directed biosynthesis with glucose derivatives to access cotton fibers with enhanced physical properties.
    Kuperman OA; de Andrade P; Sui X; Maria R; Kaplan-Ashiri I; Jiang Q; Terlier T; Kirkensgaard JJK; Field RA; Natalio F
    Cell Rep Phys Sci; 2024 May; 5(5):101963. PubMed ID: 38798901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphogenesis and cell wall composition of trichomes and their function in response to salt in halophyte Salsola ferganica.
    Liu Y; Ma Y; Aray H; Lan H
    BMC Plant Biol; 2022 Nov; 22(1):551. PubMed ID: 36447160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure, development, and the salt response of salt bladders in
    Zhang Y; Mutailifu A; Lan H
    Front Plant Sci; 2022; 13():989946. PubMed ID: 36161027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Pivotal Role of Major Chromosomes of Sub-Genomes A and D in Fiber Quality Traits of Cotton.
    Razzaq A; Zafar MM; Ali A; Hafeez A; Sharif F; Guan X; Deng X; Pengtao L; Shi Y; Haroon M; Gong W; Ren M; Yuan Y
    Front Genet; 2021; 12():642595. PubMed ID: 35401652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weighted Gene Co-Expression Network Analysis Reveals Hub Genes Contributing to Fuzz Development in
    Feng X; Liu S; Cheng H; Zuo D; Zhang Y; Wang Q; Lv L; Song G
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34067654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes of cell wall components during embryogenesis of Castanea mollissima.
    Du B; Zhang Q; Cao Q; Xing Y; Qin L; Fang K
    J Plant Res; 2020 Mar; 133(2):257-270. PubMed ID: 32036472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-cellulosic polysaccharides from cotton fibre are differently impacted by textile processing.
    Runavot JL; Guo X; Willats WG; Knox JP; Goubet F; Meulewaeter F
    PLoS One; 2014; 9(12):e115150. PubMed ID: 25517975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.