These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

673 related articles for article (PubMed ID: 20878208)

  • 1. Thermophilic, anaerobic co-digestion of microalgal biomass and cellulose for H2 production.
    Carver SM; Hulatt CJ; Thomas DN; Tuovinen OH
    Biodegradation; 2011 Jul; 22(4):805-14. PubMed ID: 20878208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling anaerobic digestion of microalgae using ADM1.
    Mairet F; Bernard O; Ras M; Lardon L; Steyer JP
    Bioresour Technol; 2011 Jul; 102(13):6823-9. PubMed ID: 21536430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris.
    Ras M; Lardon L; Bruno S; Bernet N; Steyer JP
    Bioresour Technol; 2011 Jan; 102(1):200-6. PubMed ID: 20678925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-reaction model for the anaerobic digestion of microalgae.
    Mairet F; Bernard O; Cameron E; Ras M; Lardon L; Steyer JP; Chachuat B
    Biotechnol Bioeng; 2012 Feb; 109(2):415-25. PubMed ID: 22020983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valorisation of biodiesel production wastes: Anaerobic digestion of residual Tetraselmis suecica biomass and co-digestion with glycerol.
    Santos-Ballardo DU; Font-Segura X; Ferrer AS; Barrena R; Rossi S; Valdez-Ortiz A
    Waste Manag Res; 2015 Mar; 33(3):250-7. PubMed ID: 25737140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of biogas production from microalgal biomass through cellulolytic bacterial pretreatment.
    Kavitha S; Subbulakshmi P; Rajesh Banu J; Gobi M; Tae Yeom I
    Bioresour Technol; 2017 Jun; 233():34-43. PubMed ID: 28258994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comments on 'Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable'.
    Heaven S; Milledge J; Zhang Y
    Biotechnol Adv; 2011; 29(1):164-7. PubMed ID: 21040775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microalgal system for treatment of effluent from poultry litter anaerobic digestion.
    Singh M; Reynolds DL; Das KC
    Bioresour Technol; 2011 Dec; 102(23):10841-8. PubMed ID: 21967714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of growth and lipid production characteristics of Chlorella vulgaris in artificially constructed consortia with symbiotic bacteria.
    Xue L; Shang H; Ma P; Wang X; He X; Niu J; Wu J
    J Basic Microbiol; 2018 Apr; 58(4):358-367. PubMed ID: 29488634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass.
    Lakaniemi AM; Hulatt CJ; Thomas DN; Tuovinen OH; Puhakka JA
    Biotechnol Biofuels; 2011 Sep; 4(1):34. PubMed ID: 21943287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced methane production from microalgal biomass by anaerobic bio-pretreatment.
    He S; Fan X; Katukuri NR; Yuan X; Wang F; Guo RB
    Bioresour Technol; 2016 Mar; 204():145-151. PubMed ID: 26773949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological hydrogen production by the algal biomass Chlorella vulgaris MSU 01 strain isolated from pond sediment.
    Bala Amutha K; Murugesan AG
    Bioresour Technol; 2011 Jan; 102(1):194-9. PubMed ID: 20620045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Dec; 126():24-30. PubMed ID: 23073086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31.
    Yeh KL; Chang JS
    Bioresour Technol; 2012 Feb; 105():120-7. PubMed ID: 22189073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic conversion of microalgal biomass to sustainable energy carriers--a review.
    Lakaniemi AM; Tuovinen OH; Puhakka JA
    Bioresour Technol; 2013 May; 135():222-31. PubMed ID: 23021960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of Chlorella vulgaris on sugarcane vinasse: the effect of anaerobic digestion pretreatment.
    Marques SS; Nascimento IA; de Almeida PF; Chinalia FA
    Appl Biochem Biotechnol; 2013 Dec; 171(8):1933-43. PubMed ID: 24013860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen and volatile fatty acid production during fermentation of cellulosic substrates by a thermophilic consortium at 50 and 60 °C.
    Carver SM; Nelson MC; Lepistö R; Yu Z; Tuovinen OH
    Bioresour Technol; 2012 Jan; 104():424-31. PubMed ID: 22133607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.