These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 20878351)
1. Spectroscopic characterization of the interaction of phenosafranin and safranin O with double stranded, heat denatured and single stranded calf thymus DNA. Saha I; Kumar GS J Fluoresc; 2011 Jan; 21(1):247-55. PubMed ID: 20878351 [TBL] [Abstract][Full Text] [Related]
2. Thionine interaction to DNA: comparative spectroscopic studies on double stranded versus single stranded DNA. Paul P; Suresh Kumar G J Fluoresc; 2012 Jan; 22(1):71-80. PubMed ID: 21830040 [TBL] [Abstract][Full Text] [Related]
3. A comparative study on the interaction of the putative anticancer alkaloids, sanguinarine and chelerythrine, with single- and double-stranded, and heat-denatured DNAs. Basu P; Kumar GS J Biomol Struct Dyn; 2015; 33(12):2594-605. PubMed ID: 25562701 [TBL] [Abstract][Full Text] [Related]
4. Binding interaction of cationic phenazinium dyes with calf thymus DNA: a comparative study. Sarkar D; Das P; Basak S; Chattopadhyay N J Phys Chem B; 2008 Jul; 112(30):9243-9. PubMed ID: 18610959 [TBL] [Abstract][Full Text] [Related]
5. Spectroscopic and calorimetric investigations on the binding of phenazinium dyes safranine-O and phenosafranine to double stranded RNA polynucleotides. Saha B; Kumar GS J Photochem Photobiol B; 2016 Aug; 161():129-40. PubMed ID: 27236048 [TBL] [Abstract][Full Text] [Related]
6. Sequence-selective binding of phenazinium dyes phenosafranin and safranin O to guanine-cytosine deoxyribopolynucleotides: spectroscopic and thermodynamic studies. Saha I; Hossain M; Suresh Kumar G J Phys Chem B; 2010 Nov; 114(46):15278-87. PubMed ID: 20979425 [TBL] [Abstract][Full Text] [Related]
7. Binding of phenazinium dye safranin T to polyriboadenylic acid: spectroscopic and thermodynamic study. Pradhan AB; Haque L; Roy S; Das S PLoS One; 2014; 9(2):e87992. PubMed ID: 24498422 [TBL] [Abstract][Full Text] [Related]
8. Study on the interaction between ginsenoside Rh2 and calf thymus DNA by spectroscopic techniques. Wu D; Chen Z Luminescence; 2015 Dec; 30(8):1212-8. PubMed ID: 25727213 [TBL] [Abstract][Full Text] [Related]
9. Specific recognition of single-stranded regions in ultraviolet-irradiated and heat-denatured DNA by tryptophan-containing peptides. Toulmé JJ; Charlier M; Héléne C Proc Natl Acad Sci U S A; 1974 Aug; 71(8):3185-8. PubMed ID: 4528733 [TBL] [Abstract][Full Text] [Related]
10. In vitro studies on the behavior of salmeterol xinafoate and its interaction with calf thymus DNA by multi-spectroscopic techniques. Zhao T; Bi S; Wang Y; Wang T; Pang B; Gu T Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():198-204. PubMed ID: 24866086 [TBL] [Abstract][Full Text] [Related]
11. Phenazinium dyes safranine O and phenosafranine induce self-structure in single stranded polyadenylic acid: structural and thermodynamic studies. Khan AY; Saha B; Suresh Kumar G J Photochem Photobiol B; 2014 Mar; 132():17-26. PubMed ID: 24565690 [TBL] [Abstract][Full Text] [Related]
12. Specific recognition of single-stranded nucleic acids. Interaction of tryptophan-containing peptides with native, denatured, and ultraviolet-irradiated DNA. Toulmé JJ; Hélène C J Biol Chem; 1977 Jan; 252(1):244-9. PubMed ID: 556724 [TBL] [Abstract][Full Text] [Related]
13. Binding interaction of phenazinium-based cationic photosensitizers with human hemoglobin: Exploring the effects of pH and chemical structure. Sen S; Paul BK; Guchhait N J Photochem Photobiol B; 2018 Sep; 186():88-97. PubMed ID: 30025289 [TBL] [Abstract][Full Text] [Related]
14. Biophysical studies on the base specificity and energetics of the DNA interaction of photoactive dye thionine: spectroscopic and calorimetric approach. Paul P; Hossain M; Yadav RC; Kumar GS Biophys Chem; 2010 May; 148(1-3):93-103. PubMed ID: 20231052 [TBL] [Abstract][Full Text] [Related]
15. Study on the interaction of morphine chloride with deoxyribonucleic acid by fluorescence method. Li JF; Dong C Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1938-43. PubMed ID: 18818119 [TBL] [Abstract][Full Text] [Related]
16. Photoaddition of chlorpromazine to DNA. Kochevar IE; Chung FL; Jeffrey AM Chem Biol Interact; 1984 Oct; 51(3):273-84. PubMed ID: 6488389 [TBL] [Abstract][Full Text] [Related]
17. HIV-1 nucleocapsid protein as a nucleic acid chaperone: spectroscopic study of its helix-destabilizing properties, structural binding specificity, and annealing activity. Urbaneja MA; Wu M; Casas-Finet JR; Karpel RL J Mol Biol; 2002 May; 318(3):749-64. PubMed ID: 12054820 [TBL] [Abstract][Full Text] [Related]
18. Berberine, a strong polyriboadenylic acid binding plant alkaloid: spectroscopic, viscometric, and thermodynamic study. Yadav RC; Kumar GS; Bhadra K; Giri P; Sinha R; Pal S; Maiti M Bioorg Med Chem; 2005 Jan; 13(1):165-74. PubMed ID: 15582461 [TBL] [Abstract][Full Text] [Related]
19. Spectroscopic studies on the binding interaction of phenothiazinium dyes toluidine blue O, azure A and azure B to DNA. Paul P; Suresh Kumar G Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 107():303-10. PubMed ID: 23434558 [TBL] [Abstract][Full Text] [Related]
20. Polyethylene glycols affect electron transfer rate in phenosafranin-DNA complex. Pyne P; Samanta N; Patra A; Das A; Sen P; Mitra RK Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117464. PubMed ID: 31465973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]