BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 20878668)

  • 1. Stabilization of mutant p53 via alkylation of cysteines and effects on DNA binding.
    Kaar JL; Basse N; Joerger AC; Stephens E; Rutherford TJ; Fersht AR
    Protein Sci; 2010 Dec; 19(12):2267-78. PubMed ID: 20878668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of thioredoxin deletion and p53 cysteine replacement on human p53 activity in wild-type and thioredoxin reductase null yeast.
    Stoner CS; Pearson GD; Koç A; Merwin JR; Lopez NI; Merrill GF
    Biochemistry; 2009 Sep; 48(38):9156-69. PubMed ID: 19681600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen Mustard Alkylates and Cross-Links p53 in Human Keratinocytes.
    Jan YH; Heck DE; An Y; Laskin DL; Laskin JD
    Chem Res Toxicol; 2022 Apr; 35(4):636-650. PubMed ID: 35312310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of cysteine residues in regulation of p53 function.
    Rainwater R; Parks D; Anderson ME; Tegtmeyer P; Mann K
    Mol Cell Biol; 1995 Jul; 15(7):3892-903. PubMed ID: 7791795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of two reactive cysteine residues in the tumor suppressor protein p53 using top-down FTICR mass spectrometry.
    Scotcher J; Clarke DJ; Weidt SK; Mackay CL; Hupp TR; Sadler PJ; Langridge-Smith PR
    J Am Soc Mass Spectrom; 2011 May; 22(5):888-97. PubMed ID: 21472523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hot-spot mutants of p53 core domain evince characteristic local structural changes.
    Wong KB; DeDecker BS; Freund SM; Proctor MR; Bycroft M; Fersht AR
    Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8438-42. PubMed ID: 10411893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. APR-246 reactivates mutant p53 by targeting cysteines 124 and 277.
    Zhang Q; Bykov VJN; Wiman KG; Zawacka-Pankau J
    Cell Death Dis; 2018 May; 9(5):439. PubMed ID: 29670092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of p53 through DNA charge transport involves a network of disulfides within the DNA-binding domain.
    Schaefer KN; Geil WM; Sweredoski MJ; Moradian A; Hess S; Barton JK
    Biochemistry; 2015 Jan; 54(3):932-41. PubMed ID: 25584637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in silico algorithm for identifying stabilizing pockets in proteins: test case, the Y220C mutant of the p53 tumor suppressor protein.
    Bromley D; Bauer MR; Fersht AR; Daggett V
    Protein Eng Des Sel; 2016 Sep; 29(9):377-90. PubMed ID: 27503952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating DNA Binding and Conformational Variation in Temperature Sensitive p53 Cancer Mutants Using QM-MM Simulations.
    Koulgi S; Achalere A; Sonavane U; Joshi R
    PLoS One; 2015; 10(11):e0143065. PubMed ID: 26579714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of rescue of common p53 cancer mutations by second-site suppressor mutations.
    Nikolova PV; Wong KB; DeDecker B; Henckel J; Fersht AR
    EMBO J; 2000 Feb; 19(3):370-8. PubMed ID: 10654936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wild type p53 function in p53
    Sundar D; Yu Y; Katiyar SP; Putri JF; Dhanjal JK; Wang J; Sari AN; Kolettas E; Kaul SC; Wadhwa R
    J Exp Clin Cancer Res; 2019 Feb; 38(1):103. PubMed ID: 30808373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics and Molecular Mechanisms of p53 Transcriptional Activation.
    Offutt TL; Ieong PU; Demir Ö; Amaro RE
    Biochemistry; 2018 Nov; 57(46):6528-6537. PubMed ID: 30388364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the p53-rescue drug CP-31398 in vitro and in living cells.
    Rippin TM; Bykov VJ; Freund SM; Selivanova G; Wiman KG; Fersht AR
    Oncogene; 2002 Mar; 21(14):2119-29. PubMed ID: 11948395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the Effect of the G245S Single Point Mutation on the Structure of p53 and the Binding of the Protein to DNA.
    Lepre MG; Omar SI; Grasso G; Morbiducci U; Deriu MA; Tuszynski JA
    Molecules; 2017 Aug; 22(8):. PubMed ID: 28813011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants.
    Friedler A; Hansson LO; Veprintsev DB; Freund SM; Rippin TM; Nikolova PV; Proctor MR; Rüdiger S; Fersht AR
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):937-42. PubMed ID: 11782540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of baculovirus recombinant wild-type p53. Dimerization of p53 is required for high-affinity DNA binding and cysteine oxidation inhibits p53 DNA binding.
    Delphin C; Cahen P; Lawrence JJ; Baudier J
    Eur J Biochem; 1994 Jul; 223(2):683-92. PubMed ID: 8055938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting Y220C mutated p53 by Foeniculum vulgare-derived phytochemicals as cancer therapeutics.
    Garg S; Singh J; Verma SR
    J Mol Model; 2023 Jan; 29(2):55. PubMed ID: 36700982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilising the DNA-binding domain of p53 by rational design of its hydrophobic core.
    Khoo KH; Joerger AC; Freund SM; Fersht AR
    Protein Eng Des Sel; 2009 Jul; 22(7):421-30. PubMed ID: 19515728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.