BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 20878668)

  • 21. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy.
    Bullock AN; Henckel J; Fersht AR
    Oncogene; 2000 Mar; 19(10):1245-56. PubMed ID: 10713666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox Sensitive Cysteine Residues as Crucial Regulators of Wild-Type and Mutant p53 Isoforms.
    Butturini E; Butera G; Pacchiana R; Carcereri de Prati A; Mariotto S; Donadelli M
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation.
    Kamada R; Nomura T; Anderson CW; Sakaguchi K
    J Biol Chem; 2011 Jan; 286(1):252-8. PubMed ID: 20978130
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural distortion of p53 by the mutation R249S and its rescue by a designed peptide: implications for "mutant conformation".
    Friedler A; DeDecker BS; Freund SM; Blair C; Rüdiger S; Fersht AR
    J Mol Biol; 2004 Feb; 336(1):187-96. PubMed ID: 14741214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human tumor-derived p53 proteins exhibit binding site selectivity and temperature sensitivity for transactivation in a yeast-based assay.
    Di Como CJ; Prives C
    Oncogene; 1998 May; 16(19):2527-39. PubMed ID: 9627118
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of DNA binding of p53 by its C-terminal domain.
    Weinberg RL; Freund SM; Veprintsev DB; Bycroft M; Fersht AR
    J Mol Biol; 2004 Sep; 342(3):801-11. PubMed ID: 15342238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multifunctional Compounds for Activation of the p53-Y220C Mutant in Cancer.
    Miller JJ; Orvain C; Jozi S; Clarke RM; Smith JR; Blanchet A; Gaiddon C; Warren JJ; Storr T
    Chemistry; 2018 Dec; 24(67):17734-17742. PubMed ID: 30230059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermodynamic stability of wild-type and mutant p53 core domain.
    Bullock AN; Henckel J; DeDecker BS; Johnson CM; Nikolova PV; Proctor MR; Lane DP; Fersht AR
    Proc Natl Acad Sci U S A; 1997 Dec; 94(26):14338-42. PubMed ID: 9405613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cognate DNA stabilizes the tumor suppressor p53 and prevents misfolding and aggregation.
    Ishimaru D; Ano Bom AP; Lima LM; Quesado PA; Oyama MF; de Moura Gallo CV; Cordeiro Y; Silva JL
    Biochemistry; 2009 Jul; 48(26):6126-35. PubMed ID: 19505151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of common cancer mutations on stability and DNA binding of full-length p53 compared with isolated core domains.
    Ang HC; Joerger AC; Mayer S; Fersht AR
    J Biol Chem; 2006 Aug; 281(31):21934-21941. PubMed ID: 16754663
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward the rational design of p53-stabilizing drugs: probing the surface of the oncogenic Y220C mutant.
    Basse N; Kaar JL; Settanni G; Joerger AC; Rutherford TJ; Fersht AR
    Chem Biol; 2010 Jan; 17(1):46-56. PubMed ID: 20142040
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of R249S carcinogenic and H168R-R249S suppressor mutations on p53-DNA interaction, a multi scale computational study.
    Rauf SM; Ismael M; Sahu KK; Suzuki A; Koyama M; Tsuboi H; Hatakeyama N; Endou A; Takaba H; Del Carpio CA; Kubo M; Miyamoto A
    Comput Biol Med; 2010 May; 40(5):498-508. PubMed ID: 20403587
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of disulfide bond in p53 correlates with inhibition of DNA binding and tetramerization.
    Sun XZ; Vinci C; Makmura L; Han S; Tran D; Nguyen J; Hamann M; Grazziani S; Sheppard S; Gutova M; Zhou F; Thomas J; Momand J
    Antioxid Redox Signal; 2003 Oct; 5(5):655-65. PubMed ID: 14580323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preferential binding of hot spot mutant p53 proteins to supercoiled DNA in vitro and in cells.
    Brázdová M; Navrátilová L; Tichý V; Němcová K; Lexa M; Hrstka R; Pečinka P; Adámik M; Vojtesek B; Paleček E; Deppert W; Fojta M
    PLoS One; 2013; 8(3):e59567. PubMed ID: 23555710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural effects of the L145Q, V157F, and R282W cancer-associated mutations in the p53 DNA-binding core domain.
    Calhoun S; Daggett V
    Biochemistry; 2011 Jun; 50(23):5345-53. PubMed ID: 21561095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations.
    Joerger AC; Ang HC; Veprintsev DB; Blair CM; Fersht AR
    J Biol Chem; 2005 Apr; 280(16):16030-7. PubMed ID: 15703170
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro analysis of the dominant negative effect of p53 mutants.
    Chène P
    J Mol Biol; 1998 Aug; 281(2):205-9. PubMed ID: 9698540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural basis of p53 inactivation by cavity-creating cancer mutations and its implications for the development of mutant p53 reactivators.
    Balourdas DI; Markl AM; Krämer A; Settanni G; Joerger AC
    Cell Death Dis; 2024 Jun; 15(6):408. PubMed ID: 38862470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of temperature on the p53-DNA binding interactions and their dynamical behavior: comparing the wild type to the R248Q mutant.
    Barakat K; Issack BB; Stepanova M; Tuszynski J
    PLoS One; 2011; 6(11):e27651. PubMed ID: 22110706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How many mutant p53 molecules are needed to inactivate a tetramer?
    Chan WM; Siu WY; Lau A; Poon RY
    Mol Cell Biol; 2004 Apr; 24(8):3536-51. PubMed ID: 15060172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.