BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 20879380)

  • 1. Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression.
    Hu Z; Niemeijer M; Abràmoft MD; Lee K; Garvin MK
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):33-40. PubMed ID: 20879380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimodal retinal vessel segmentation from spectral-domain optical coherence tomography and fundus photography.
    Hu Z; Niemeijer M; Abràmoff MD; Garvin MK
    IEEE Trans Med Imaging; 2012 Oct; 31(10):1900-11. PubMed ID: 22759443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An accurate multimodal 3-D vessel segmentation method based on brightness variations on OCT layers and curvelet domain fundus image analysis.
    Kafieh R; Rabbani H; Hajizadeh F; Ommani M
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2815-23. PubMed ID: 23722446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated segmentation of optic disc in SD-OCT images and cup-to-disc ratios quantification by patch searching-based neural canal opening detection.
    Wu M; Leng T; de Sisternes L; Rubin DL; Chen Q
    Opt Express; 2015 Nov; 23(24):31216-29. PubMed ID: 26698750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated 3D segmentation of multiple surfaces with a shared hole: segmentation of the neural canal opening in SD-OCT volumes.
    Antony BJ; Miri MS; Abràmoff MD; Kwon YH; Garvin MK
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):739-46. PubMed ID: 25333185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact surface registration of retinal surfaces from 3-D optical coherence tomography images.
    Lee S; Lebed E; Sarunic MV; Beg MF
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):609-17. PubMed ID: 25312906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probabilistic intra-retinal layer segmentation in 3-D OCT images using global shape regularization.
    Rathke F; Schmidt S; Schnörr C
    Med Image Anal; 2014 Jul; 18(5):781-94. PubMed ID: 24835184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated segmentation of neural canal opening and optic cup in 3D spectral optical coherence tomography volumes of the optic nerve head.
    Hu Z; Abràmoff MD; Kwon YH; Lee K; Garvin MK
    Invest Ophthalmol Vis Sci; 2010 Nov; 51(11):5708-17. PubMed ID: 20554616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula.
    Quellec G; Lee K; Dolejsi M; Garvin MK; Abràmoff MD; Sonka M
    IEEE Trans Med Imaging; 2010 Jun; 29(6):1321-30. PubMed ID: 20363675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion artefact correction in retinal optical coherence tomography using local symmetry.
    Montuoro A; Wu J; Waldstein S; Gerendas B; Langs G; Simader C; Schmidt-Erfurth U
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):130-7. PubMed ID: 25485371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated drusen segmentation and quantification in SD-OCT images.
    Chen Q; Leng T; Zheng L; Kutzscher L; Ma J; de Sisternes L; Rubin DL
    Med Image Anal; 2013 Dec; 17(8):1058-72. PubMed ID: 23880375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Texton-based segmentation of retinal vessels.
    Adjeroh DA; Kandaswamy U; Odom JV
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1384-93. PubMed ID: 17429484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A self-calibrating approach for the segmentation of retinal vessels by template matching and contour reconstruction.
    Kovács G; Hajdu A
    Med Image Anal; 2016 Apr; 29():24-46. PubMed ID: 26766207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated retinal shadow compensation of optical coherence tomography images.
    Fabritius T; Makita S; Hong Y; Myllylä R; Yasuno Y
    J Biomed Opt; 2009; 14(1):010503. PubMed ID: 19256685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated retinal layers segmentation in SD-OCT images using dual-gradient and spatial correlation smoothness constraint.
    Niu S; Chen Q; de Sisternes L; Rubin DL; Zhang W; Liu Q
    Comput Biol Med; 2014 Nov; 54():116-28. PubMed ID: 25240102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation of regional information in optimal 3-D graph search with application for intraretinal layer segmentation of optical coherence tomography images.
    Haeker M; Wu X; Abràmoff M; Kardon R; Sonka M
    Inf Process Med Imaging; 2007; 20():607-18. PubMed ID: 17633733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vessel boundary delineation on fundus images using graph-based approach.
    Xu X; Niemeijer M; Song Q; Sonka M; Garvin MK; Reinhardt JM; Abràmoff MD
    IEEE Trans Med Imaging; 2011 Jun; 30(6):1184-91. PubMed ID: 21216707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of a retinal blood vessel segmentation method using the Insight Segmentation and Registration Toolkit (ITK).
    Martinez-Perez M; Hughes AD; Thom SA; Parker KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():892-5. PubMed ID: 18002100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of gradient vector flow field in a multimodal graph-theoretic approach for segmenting the internal limiting membrane from glaucomatous optic nerve head-centered SD-OCT volumes.
    Miri MS; Robles VA; Abràmoff MD; Kwon YH; Garvin MK
    Comput Med Imaging Graph; 2017 Jan; 55():87-94. PubMed ID: 27507325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic segmentation of the optic nerve head for deformation measurements in video rate optical coherence tomography.
    Hidalgo-Aguirre M; Gitelman J; Lesk MR; Costantino S
    J Biomed Opt; 2015 Nov; 20(11):116008. PubMed ID: 26598974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.