These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 20879412)

  • 1. Surgical task and skill classification from eye tracking and tool motion in minimally invasive surgery.
    Ahmidi N; Hager GD; Ishii L; Fichtinger G; Gallia GL; Ishii M
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):295-302. PubMed ID: 20879412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An objective and automated method for assessing surgical skill in endoscopic sinus surgery using eye-tracking and tool-motion data.
    Ahmidi N; Ishii M; Fichtinger G; Gallia GL; Hager GD
    Int Forum Allergy Rhinol; 2012 Nov; 2(6):507-15. PubMed ID: 22696449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated surgical skill assessment in RMIS training.
    Zia A; Essa I
    Int J Comput Assist Radiol Surg; 2018 May; 13(5):731-739. PubMed ID: 29549553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eye gaze metrics for skill assessment and feedback in kidney stone surgery.
    Li Y; Reed A; Kavoussi N; Wu JY
    Int J Comput Assist Radiol Surg; 2023 Jun; 18(6):1127-1134. PubMed ID: 37202714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gaze gesture based human robot interaction for laparoscopic surgery.
    Fujii K; Gras G; Salerno A; Yang GZ
    Med Image Anal; 2018 Feb; 44():196-214. PubMed ID: 29277075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eye Tracking and Motion Data Predict Endoscopic Sinus Surgery Skill.
    Berges AJ; Vedula SS; Chara A; Hager GD; Ishii M; Malpani A
    Laryngoscope; 2023 Mar; 133(3):500-505. PubMed ID: 35357011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Task versus subtask surgical skill evaluation of robotic minimally invasive surgery.
    Reiley CE; Hager GD
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):435-42. PubMed ID: 20426017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The minimally acceptable classification criterion for surgical skill: intent vectors and separability of raw motion data.
    Dockter RL; Lendvay TS; Sweet RM; Kowalewski TM
    Int J Comput Assist Radiol Surg; 2017 Jul; 12(7):1151-1159. PubMed ID: 28516302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robotic path planning for surgeon skill evaluation in minimally-invasive sinus surgery.
    Ahmidi N; Hager GD; Ishii L; Gallia GL; Ishii M
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):471-8. PubMed ID: 23285585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HMM assessment of quality of movement trajectory in laparoscopic surgery.
    Leong JJ; Nicolaou M; Atallah L; Mylonas GP; Darzi AW; Yang GZ
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):752-9. PubMed ID: 17354958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Automated Skill Assessment Framework Based on Visual Motion Signals and a Deep Neural Network in Robot-Assisted Minimally Invasive Surgery.
    Pan M; Wang S; Li J; Li J; Yang X; Liang K
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated robot-assisted surgical skill evaluation: Predictive analytics approach.
    Fard MJ; Ameri S; Darin Ellis R; Chinnam RB; Pandya AK; Klein MD
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28660725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hidden Markov models of minimally invasive surgery.
    Rosen J; Richards C; Hannaford B; Sinanan M
    Stud Health Technol Inform; 2000; 70():279-85. PubMed ID: 10977557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data-derived models for segmentation with application to surgical assessment and training.
    Varadarajan B; Reiley C; Lin H; Khudanpur S; Hager G
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):426-34. PubMed ID: 20426016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affordable, web-based surgical skill training and evaluation tool.
    Islam G; Kahol K; Li B; Smith M; Patel VL
    J Biomed Inform; 2016 Feb; 59():102-14. PubMed ID: 26556643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Video-based surgical skill assessment using 3DĀ convolutional neural networks.
    Funke I; Mees ST; Weitz J; Speidel S
    Int J Comput Assist Radiol Surg; 2019 Jul; 14(7):1217-1225. PubMed ID: 31104257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting surgical skill from the first N seconds of a task: value over task time using the isogony principle.
    French A; Lendvay TS; Sweet RM; Kowalewski TM
    Int J Comput Assist Radiol Surg; 2017 Jul; 12(7):1161-1170. PubMed ID: 28516300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling and evaluation of surgical performance using hidden Markov models.
    Megali G; Sinigaglia S; Tonet O; Dario P
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):1911-9. PubMed ID: 17019854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated objective surgical skill assessment in the operating room from unstructured tool motion in septoplasty.
    Ahmidi N; Poddar P; Jones JD; Vedula SS; Ishii L; Hager GD; Ishii M
    Int J Comput Assist Radiol Surg; 2015 Jun; 10(6):981-91. PubMed ID: 25895080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surgical tooltip motion metrics assessment using virtual marker: an objective approach to skill assessment for minimally invasive surgery.
    Aghazadeh F; Zheng B; Tavakoli M; Rouhani H
    Int J Comput Assist Radiol Surg; 2023 Dec; 18(12):2191-2202. PubMed ID: 37597089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.