These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20879564)

  • 1. Modulator design for x-ray scatter correction using primary modulation: material selection.
    Gao H; Zhu L; Fahrig R
    Med Phys; 2010 Aug; 37(8):4029-37. PubMed ID: 20879564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scatter correction method for x-ray CT using primary modulation: phantom studies.
    Gao H; Fahrig R; Bennett NR; Sun M; Star-Lack J; Zhu L
    Med Phys; 2010 Feb; 37(2):934-46. PubMed ID: 20229902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local filtration based scatter correction for cone-beam CT using primary modulation.
    Zhu L
    Med Phys; 2016 Nov; 43(11):6199. PubMed ID: 27806607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation study of a quasi-monochromatic beam for x-ray computed mammotomography.
    McKinley RL; Tornai MP; Samei E; Bradshaw ML
    Med Phys; 2004 Apr; 31(4):800-13. PubMed ID: 15124997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Densely sampled spectral modulation for x-ray CT using a stationary modulator with flying focal spot: a conceptual and feasibility study of scatter and spectral correction.
    Gao H; Zhang T; Bennett NR; Wang AS
    Med Phys; 2021 Apr; 48(4):1557-1570. PubMed ID: 33420741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-shot quantitative x-ray imaging using a primary modulator and dual-layer detector.
    Shi L; Bennett NR; Vezeridis A; Kothary N; Wang AS
    Med Phys; 2024 Apr; 51(4):2621-2632. PubMed ID: 37843975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of image quality with a fast iterative scatter and beam hardening correction method for kV CBCT.
    Reitz I; Hesse BM; Nill S; Tücking T; Oelfke U
    Z Med Phys; 2009; 19(3):158-72. PubMed ID: 19761093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empirical binary tomography calibration (EBTC) for the precorrection of beam hardening and scatter for flat panel CT.
    Grimmer R; Kachelriess M
    Med Phys; 2011 Apr; 38(4):2233-40. PubMed ID: 21626957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scatter correction method for X-ray CT using primary modulation: theory and preliminary results.
    Zhu L; Bennett NR; Fahrig R
    IEEE Trans Med Imaging; 2006 Dec; 25(12):1573-87. PubMed ID: 17167993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empirical beam hardening and ring artifact correction for x-ray grating interferometry (EBHC-GI).
    Nelson BJ; Leng S; Shanblatt ER; McCollough CH; Koenig T
    Med Phys; 2021 Mar; 48(3):1327-1340. PubMed ID: 33338261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and characterization of a spatially distributed multibeam field emission x-ray source for stationary digital breast tomosynthesis.
    Qian X; Rajaram R; Calderon-Colon X; Yang G; Phan T; Lalush DS; Lu J; Zhou O
    Med Phys; 2009 Oct; 36(10):4389-99. PubMed ID: 19928069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmentation-free empirical beam hardening correction for CT.
    Schüller S; Sawall S; Stannigel K; Hülsbusch M; Ulrici J; Hell E; Kachelrieß M
    Med Phys; 2015 Feb; 42(2):794-803. PubMed ID: 25652493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Empirical beam hardening correction (EBHC) for CT.
    Kyriakou Y; Meyer E; Prell D; Kachelriess M
    Med Phys; 2010 Oct; 37(10):5179-87. PubMed ID: 21089751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental evaluation of fiber-interspaced antiscatter grids for large patient imaging with digital x-ray systems.
    Fetterly KA; Schueler BA
    Phys Med Biol; 2007 Aug; 52(16):4863-80. PubMed ID: 17671340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physics-based spectral compensation algorithm for x-ray CT with primary modulator.
    Gao H; Zhang L; Grimmer R; Fahrig R
    Phys Med Biol; 2019 Jun; 64(12):125006. PubMed ID: 30999285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Singular value description of a digital radiographic detector: theory and measurements.
    Kyprianou IS; Badano A; Gallas BD; Myers KJ
    Med Phys; 2008 Oct; 35(10):4744-56. PubMed ID: 18975719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT.
    Siewerdsen JH; Daly MJ; Bakhtiar B; Moseley DJ; Richard S; Keller H; Jaffray DA
    Med Phys; 2006 Jan; 33(1):187-97. PubMed ID: 16485425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scatter correction using a primary modulator on a clinical angiography C-arm CT system.
    Bier B; Berger M; Maier A; Kachelrieß M; Ritschl L; Müller K; Choi JH; Fahrig R
    Med Phys; 2017 Sep; 44(9):e125-e137. PubMed ID: 28061010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and correction of cupping effect artefacts in cone beam CT.
    Hunter AK; McDavid WD
    Dentomaxillofac Radiol; 2012 Mar; 41(3):217-23. PubMed ID: 22378754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photon counting x-ray imaging with K-edge filtered x-rays: A simulation study.
    Atak H; Shikhaliev PM
    Med Phys; 2016 Mar; 43(3):1385-400. PubMed ID: 26936723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.