These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20879969)

  • 21. Dipeptidyl peptidase-4 inhibition in diabetic rats leads to activation of the transcription factor CREB in β-cells.
    Pugazhenthi S; Qin L; Bouchard R
    Eur J Pharmacol; 2015 May; 755():42-9. PubMed ID: 25720341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel dipeptidyl peptidase-4 inhibitor, alogliptin (SYR-322), is effective in diabetic rats with sulfonylurea-induced secondary failure.
    Asakawa T; Moritoh Y; Kataoka O; Suzuki N; Takeuchi K; Odaka H
    Life Sci; 2009 Jul; 85(3-4):122-6. PubMed ID: 19427871
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chronic administration of alogliptin, a novel, potent, and highly selective dipeptidyl peptidase-4 inhibitor, improves glycemic control and beta-cell function in obese diabetic ob/ob mice.
    Moritoh Y; Takeuchi K; Asakawa T; Kataoka O; Odaka H
    Eur J Pharmacol; 2008 Jul; 588(2-3):325-32. PubMed ID: 18499100
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New approaches to treating type 2 diabetes mellitus in the elderly: role of incretin therapies.
    Abbatecola AM; Maggi S; Paolisso G
    Drugs Aging; 2008; 25(11):913-25. PubMed ID: 18947259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pioglitazone and alogliptin combination therapy in type 2 diabetes: a pathophysiologically sound treatment.
    Triplitt C; Cersosimo E; DeFronzo RA
    Vasc Health Risk Manag; 2010 Sep; 6():671-90. PubMed ID: 20859539
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pharmacological stimulation of serotonin 5-HT1B receptors enhances increases in plasma active glucagon-like peptide-1 levels induced by dipeptidyl peptidase-4 inhibition independently of feeding in mice.
    Nonogaki K; Kaji T
    Diabetes Metab; 2015 Nov; 41(5):425-8. PubMed ID: 26234524
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alogliptin: safety, efficacy, and clinical implications.
    Marino AB; Cole SW
    J Pharm Pract; 2015 Feb; 28(1):99-106. PubMed ID: 24532820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alogliptin: A new dipeptidyl peptidase-4 inhibitor for the management of type 2 diabetes mellitus.
    Ndefo UA; Okoli O; Erowele G
    Am J Health Syst Pharm; 2014 Jan; 71(2):103-9. PubMed ID: 24375601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The physiologic role of incretin hormones: clinical applications.
    Cefalu WT
    J Am Osteopath Assoc; 2010 Mar; 110(3 Suppl 2):S8-S14. PubMed ID: 20382839
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cardiovascular Actions and Clinical Outcomes With Glucagon-Like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors.
    Nauck MA; Meier JJ; Cavender MA; Abd El Aziz M; Drucker DJ
    Circulation; 2017 Aug; 136(9):849-870. PubMed ID: 28847797
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin in patients with type 2 diabetes and inadequate glycemic control: a randomized, double-blind, placebo-controlled study.
    DeFronzo RA; Fleck PR; Wilson CA; Mekki Q;
    Diabetes Care; 2008 Dec; 31(12):2315-7. PubMed ID: 18809631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cardiovascular Effects of Incretin-Based Therapies.
    White WB; Baker WL
    Annu Rev Med; 2016; 67():245-60. PubMed ID: 26768240
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cardiovascular effects of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes.
    Koska J; Sands M; Burciu C; Reaven P
    Diab Vasc Dis Res; 2015 May; 12(3):154-63. PubMed ID: 25852133
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alogliptin for the treatment of type 2 diabetes: a drug safety evaluation.
    Yabe D; Seino Y
    Expert Opin Drug Saf; 2016; 15(2):249-64. PubMed ID: 26607297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of additional administration of acarbose on blood glucose fluctuations and postprandial hyperglycemia in patients with type 2 diabetes mellitus under treatment with alogliptin.
    Kusunoki Y; Katsuno T; Myojin M; Miyakoshi K; Ikawa T; Matsuo T; Ochi F; Tokuda M; Murai K; Miuchi M; Hamaguchi T; Miyagawa J; Namba M
    Endocr J; 2013; 60(4):431-9. PubMed ID: 23220949
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [The incretin effect and type 2 diabetes].
    Quintanilla-García C; Zúñiga-Guajardo S
    Rev Med Inst Mex Seguro Soc; 2010; 48(5):509-20. PubMed ID: 21205499
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alogliptin, a potent and selective dipeptidyl peptidase-IV inhibitor for the treatment of type 2 diabetes.
    Deacon CF
    Curr Opin Investig Drugs; 2008 Apr; 9(4):402-13. PubMed ID: 18393107
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors.
    Nauck M
    Diabetes Obes Metab; 2016 Mar; 18(3):203-16. PubMed ID: 26489970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An update on the clinical pharmacology of the dipeptidyl peptidase 4 inhibitor alogliptin used for the treatment of type 2 diabetes mellitus.
    Chen XW; He ZX; Zhou ZW; Yang T; Zhang X; Yang YX; Duan W; Zhou SF
    Clin Exp Pharmacol Physiol; 2015 Dec; 42(12):1225-38. PubMed ID: 26218204
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of liraglutide versus other incretin-related anti-hyperglycaemic agents.
    Blonde L; Montanya E
    Diabetes Obes Metab; 2012 Apr; 14 Suppl 2():20-32. PubMed ID: 22405266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.