These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 2088012)

  • 1. Redox agents modulate a(K+)0 changes evoked by acetylcholine and adrenaline in frog heart.
    Puppi A; Wittmann I; Dely M
    Acta Physiol Hung; 1990; 76(1):61-9. PubMed ID: 2088012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse modulation of extracellular Na+- and K+-activities by ascorbate or methylene blue.
    Puppi A; Wittmann I; Dely M
    Gen Physiol Biophys; 1986 Apr; 5(2):187-91. PubMed ID: 3025056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between the tissue redox state potential and dak/dt changes of [K+]0 activity during k-strophantoside or acetylcholine induced contractures.
    Wittmann I; Puppi A; Dely M
    Acta Physiol Acad Sci Hung; 1982; 60(4):233-6. PubMed ID: 6985315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in autorhythmic heart frequency elicited by redox agents.
    Wittmann I; Puppi A; Dely M
    Chem Biol Interact; 1987; 63(2):115-25. PubMed ID: 3311410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlations between redox-state potential changes in different tissues and the heart frequency in vivo.
    Szabó IT; Puppi A; Gábriel M; Dely M
    Gen Physiol Biophys; 1986 Aug; 5(4):433-43. PubMed ID: 3770462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlations between the tissue redox-state and K(+)-contractures.
    Puppi A; Szekeres S; Dely M
    Acta Physiol Hung; 1990; 75(3):253-9. PubMed ID: 2144094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlations between the actual redox-state potential (E0') of biophase and heart activity in vivo.
    Puppi A; Dely M
    Acta Physiol Hung; 1991; 77(1):43-56. PubMed ID: 1950592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of redox agents on the non-electrolyte isotonic concentrations and on the equivalent pore radius of skeletal muscles of the frog.
    Dely M; Puppi A; Bédy E; Práger P
    Acta Physiol Hung; 1985; 65(2):103-8. PubMed ID: 3157293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [T-channels and Na+,Ca2+-exchangers as components of the Ca2+-system of the myocardial activity regulation of the frog Rana temporaria].
    Shemarova IV; Kuznetsov SV; Demina IN; Nesterov VP
    Zh Evol Biokhim Fiziol; 2009; 45(3):319-28. PubMed ID: 19569558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlations between the medium's redox potential and the types of acetylcholine and adrenaline effect. I.
    Puppi A; Tigyi A; Szalay L
    Acta Physiol Acad Sci Hung; 1972; 41(2):199-205. PubMed ID: 4640710
    [No Abstract]   [Full Text] [Related]  

  • 11. Correlation between acetylcholine-evoked electrical activity, effect of cyclic AMP and actual redox state in frog rectus muscle.
    Puppi A; Práger P; Dely M
    Acta Biochim Biophys Acad Sci Hung; 1981; 16(1-2):89-94. PubMed ID: 6278808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acidosis counteracts the negative inotropic effect of K+ on ventricular muscle strips from the toad Bufo marinus.
    Andersen JB; Gesser H; Wang T
    Physiol Biochem Zool; 2004; 77(2):223-31. PubMed ID: 15095242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox regulation of autorhythmic heart contractions and the effect of acetylcholine failed to manifest itself by decreasing [Ca2+]0.
    Práger P; Dely M; Puppi A; Gács E
    Gen Pharmacol; 1982; 13(2):147-51. PubMed ID: 6980163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlations between positive and negative aeroions, tissue redox-state potential and heart frequency in rats.
    Puppi A; Práger P; Szabó IT; Gábriel M; Dely M
    Acta Physiol Hung; 1987; 70(1):41-9. PubMed ID: 3425333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [2 mechanisms of the inhibitory action of acetylcholine and imidazole on the sensitivity of the frog myocardium to adrenaline].
    Solomonova VG; Iurchenko OP; Turpaev TM
    Dokl Akad Nauk SSSR; 1987; 292(4):1007-10. PubMed ID: 3493891
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of extracellular changes on spontaneous heart rate of normoxia- and anoxia-acclimated turtles (Trachemys scripta).
    Stecyk JA; Farrell AP
    J Exp Biol; 2007 Feb; 210(Pt 3):421-31. PubMed ID: 17234611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of chemical sympathectomy on the age dynamics of the heart rate and sensitivity of the heart to adrenaline and acetylcholine].
    Sitdikov FG; Savin VF
    Fiziol Zh SSSR Im I M Sechenova; 1987 Jan; 73(1):76-82. PubMed ID: 3569584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between the redox state of the biophase and the effect of acetylcholine on the activity of (Na+ / K+) ATP-ase in Rana esculenta.
    Puppi A; Szalay L; Dely M
    Comp Biochem Physiol C Comp Pharmacol; 1975 Jan; 50(1):75-9. PubMed ID: 240628
    [No Abstract]   [Full Text] [Related]  

  • 19. [The role of calcium ions in the process of elimination of stimulating agents from the frog heart under the effect of acetylcholine and adrenaline].
    Pumintseva TG
    Fiziol Zh SSSR Im I M Sechenova; 1965 Jul; 51(7):851-6. PubMed ID: 5884923
    [No Abstract]   [Full Text] [Related]  

  • 20. Myocardial potassium balance during adrenergic stimulation.
    Ellingsen O
    J Oslo City Hosp; 1989; 39(4-5):39-51. PubMed ID: 2547922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.