BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 20880209)

  • 1. Development of a nondestructive fluorescence-based enzymatic staining of microcolonies for enumerating bacterial contamination in filterable products.
    Baumstummler A; Chollet R; Meder H; Olivieri F; Rouillon S; Waiche G; Ribault S
    J Appl Microbiol; 2011 Jan; 110(1):69-79. PubMed ID: 20880209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of microbial contaminants in mammalian cell cultures using a new fluorescence-based staining method.
    Baumstummler A; Chollet R; Meder H; Rofel C; Venchiarutti A; Ribault S
    Lett Appl Microbiol; 2010 Dec; 51(6):671-7. PubMed ID: 21039669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and characterization of filterable heterotrophic bacteria from rural groundwater supplies.
    Lillis TO; Bissonnette GK
    Lett Appl Microbiol; 2001 Apr; 32(4):268-72. PubMed ID: 11298939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence-based rapid detection of microbiological contaminants in water samples.
    Meder H; Baumstummler A; Chollet R; Barrier S; Kukuczka M; Olivieri F; Welterlin E; Beguin V; Ribault S
    ScientificWorldJournal; 2012; 2012():234858. PubMed ID: 22623887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid monitoring of microbial contamination on herbal medicines by fluorescent staining method.
    Nakajima K; Nonaka K; Yamamoto K; Yamaguchi N; Tani K; Nasu M
    Lett Appl Microbiol; 2005; 40(2):128-32. PubMed ID: 15644112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tryptic soy medium is feasible for the in situ preparation of standards containing small defined numbers of microbial cells.
    Matsuoka H; Shigetomi T; Funabashi H; Saito M; Igimi S
    J Microbiol Methods; 2013 Apr; 93(1):49-51. PubMed ID: 23403310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modern microbiological methods for foods: colony count and direct count methods. A review.
    García-Armesto MR; Prieto M; García-López ML; Otero A; Moreno B
    Microbiologia; 1993 Apr; 9(1):1-13. PubMed ID: 8397961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of multicolour digital image analysis system to enumerate actively respiring bacteria in natural river water.
    Ogawa M; Tani K; Yamaguchi N; Nasu M
    J Appl Microbiol; 2003; 95(1):120-8. PubMed ID: 12807461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of bacteria in human feces using 16S rRNA-hybridization, DNA-staining and flow cytometry.
    Vaahtovuo J; Korkeamäki M; Munukka E; Viljanen MK; Toivanen P
    J Microbiol Methods; 2005 Dec; 63(3):276-86. PubMed ID: 15935498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow cytometry for the rapid detection of bacteria in cell culture production medium.
    McHugh IO; Tucker AL
    Cytometry A; 2007 Dec; 71(12):1019-26. PubMed ID: 17987660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of glutaraldehyde for the staining of esterase-active cells with carboxyfluorescein diacetate.
    Morono Y; Takano S; Miyanaga K; Tanji Y; Unno H; Hori K
    Biotechnol Lett; 2004 Mar; 26(5):379-83. PubMed ID: 15104134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved method for the selective detection of fungi in hospital waters by solid phase cytometry.
    De Vos MM; Nelis HJ
    J Microbiol Methods; 2006 Dec; 67(3):557-65. PubMed ID: 16884797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of bacterial contamination in starch and resin-based papermaking chemicals using fluorescence techniques.
    Nohynek L; Saski E; Haikara A; Raaska L
    J Ind Microbiol Biotechnol; 2003 Apr; 30(4):239-44. PubMed ID: 12720090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of disruption procedures for enumeration of activated sludge floc bacteria by flow cytometry.
    Falcioni T; Manti A; Boi P; Canonico B; Balsamo M; Papa S
    Cytometry B Clin Cytom; 2006 May; 70(3):149-53. PubMed ID: 16572416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ability of direct fluorescence-based, two-colour assays to detect different physiological states of oral streptococci.
    Decker EM
    Lett Appl Microbiol; 2001 Sep; 33(3):188-92. PubMed ID: 11555201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and automated detection of fluorescent total bacteria in water samples.
    Lepeuple AS; Gilouppe S; Pierlot E; De Roubin MR
    Int J Food Microbiol; 2004 May; 92(3):327-32. PubMed ID: 15145591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular injuries upon exposure of Escherichia coli and Lactobacillus rhamnosus to high-intensity ultrasound.
    Ananta E; Voigt D; Zenker M; Heinz V; Knorr D
    J Appl Microbiol; 2005; 99(2):271-8. PubMed ID: 16033457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of Candida shehatae viability by flow cytometry and fluorescent probes.
    Monthéard J; Garcier S; Lombard E; Cameleyre X; Guillouet S; Molina-Jouve C; Alfenore S
    J Microbiol Methods; 2012 Oct; 91(1):8-13. PubMed ID: 22796678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiling bacterial survival through a water treatment process and subsequent distribution system.
    Hoefel D; Monis PT; Grooby WL; Andrews S; Saint CP
    J Appl Microbiol; 2005; 99(1):175-86. PubMed ID: 15960678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of CSE to counterstain particles and dead bacterial cells with permeabilised membranes: application to viability assessment in waters.
    Catala P; Parthuisot N; Bernard L; Baudart J; Lemarchand K; Lebaron P
    FEMS Microbiol Lett; 1999 Sep; 178(2):219-26. PubMed ID: 10499271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.