BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 20880362)

  • 1. Amygdala, deep cerebellar nuclei and red nucleus contribute to delay eyeblink conditioning in C57BL /6 mice.
    Sakamoto T; Endo S
    Eur J Neurosci; 2010 Nov; 32(9):1537-51. PubMed ID: 20880362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GABAA receptors in deep cerebellar nuclei play important roles in mouse eyeblink conditioning.
    Sakamoto T; Endo S
    Brain Res; 2008 Sep; 1230():125-37. PubMed ID: 18621036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disrupted topography of the acquired trace-conditioned eyeblink responses in guinea pigs after suppression of cerebellar cortical inhibition to the interpositus nucleus.
    Hu B; Chen H; Feng H; Zeng Y; Yang L; Fan ZL; Wu YM; Sui JF
    Brain Res; 2010 Jun; 1337():41-55. PubMed ID: 20381463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociaton of conditioned eye and limb responses in the cerebellar interpositus.
    Mojtahedian S; Kogan DR; Kanzawa SA; Thompson RF; Lavond DG
    Physiol Behav; 2007 May; 91(1):9-14. PubMed ID: 17320121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep cerebellar nuclei play an important role in two-tone discrimination on delay eyeblink conditioning in C57BL/6 mice.
    Sakamoto T; Endo S
    PLoS One; 2013; 8(3):e59880. PubMed ID: 23555821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of hippocampal NMDA receptors in trace eyeblink conditioning.
    Sakamoto T; Takatsuki K; Kawahara S; Kirino Y; Niki H; Mishina M
    Brain Res; 2005 Mar; 1039(1-2):130-6. PubMed ID: 15781054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of the interpositus nucleus blocks the acquisition of conditioned responses and timing changes in conditioning-specific reflex modification of the rabbit eyeblink response.
    Burhans LB; Schreurs BG
    Neurobiol Learn Mem; 2018 Nov; 155():143-156. PubMed ID: 30053576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of cerebellar reversible inactivations on the acquisition of trace conditioned eyeblink responses in guinea pigs: comparison of short and long trace intervals.
    Hu B; Yang L; Huang LS; Chen H; Zeng Y; Feng H; Sui JF
    Neurosci Lett; 2009 Jul; 459(1):41-5. PubMed ID: 19410632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of the brachium conjunctivum prevents extinction of classically conditioned eyeblinks.
    Nilaweera WU; Zenitsky GD; Bracha V
    Brain Res; 2005 May; 1045(1-2):175-84. PubMed ID: 15910776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of multiple-session delay eyeblink conditioning comparing patients with focal cerebellar lesions and cerebellar degeneration.
    Gerwig M; Guberina H; Esser AC; Siebler M; Schoch B; Frings M; Kolb FP; Aurich V; Beck A; Forsting M; Timmann D
    Behav Brain Res; 2010 Oct; 212(2):143-51. PubMed ID: 20385171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-methyl-D-aspartate receptors play important roles in acquisition and expression of the eyeblink conditioned response in glutamate receptor subunit delta2 mutant mice.
    Kato Y; Takatsuki K; Kawahara S; Fukunaga S; Mori H; Mishina M; Kirino Y
    Neuroscience; 2005; 135(4):1017-23. PubMed ID: 16165299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trace eyeblink conditioning is hippocampally dependent in mice.
    Tseng W; Guan R; Disterhoft JF; Weiss C
    Hippocampus; 2004; 14(1):58-65. PubMed ID: 15058483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ipsilateral cerebellum ablation on acquisition and retention of classically conditioned eyeblink responses in rats.
    Horiuchi T; Kawahara S
    Neurosci Lett; 2010 Mar; 472(2):148-52. PubMed ID: 20138123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of cerebellar, amygdalar, and hippocampal lesions on classical eyeblink conditioning in rats.
    Lee T; Kim JJ
    J Neurosci; 2004 Mar; 24(13):3242-50. PubMed ID: 15056703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferior olivary inactivation abolishes conditioned eyeblinks: extinction or cerebellar malfunction?
    Zbarska S; Holland EA; Bloedel JR; Bracha V
    Behav Brain Res; 2007 Mar; 178(1):128-38. PubMed ID: 17222920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transsynaptic tracing of conditioned eyeblink circuits in the mouse cerebellum.
    Sun LW
    Neuroscience; 2012 Feb; 203():122-34. PubMed ID: 22198021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMDA receptor-dependent processes in the medial prefrontal cortex are important for acquisition and the early stage of consolidation during trace, but not delay eyeblink conditioning.
    Takehara-Nishiuchi K; Kawahara S; Kirino Y
    Learn Mem; 2005; 12(6):606-14. PubMed ID: 16322362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ibotenic acid lesions to ventrolateral thalamic nuclei disrupts trace and delay eyeblink conditioning in rabbits.
    Oswald BB; Knuckley B; Maddox SA; Powell DA
    Behav Brain Res; 2007 Apr; 179(1):111-7. PubMed ID: 17335917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired eyeblink conditioning in 78 kDa-glucose regulated protein (GRP78)/immunoglobulin binding protein (BiP) conditional knockout mice.
    Kim S; Wang M; Lee AS; Thompson RF
    Behav Neurosci; 2011 Jun; 125(3):404-11. PubMed ID: 21517144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible inactivations of the cerebellum with muscimol prevent the acquisition and extinction of conditioned nictitating membrane responses in the rabbit.
    Hardiman MJ; Ramnani N; Yeo CH
    Exp Brain Res; 1996 Jul; 110(2):235-47. PubMed ID: 8836688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.