BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2088041)

  • 1. Development of an electrical impedance tomography system for noninvasive temperature monitoring of hyperthermia treatments.
    Blad B; Bertenstam L; Persson BR
    Adv Exp Med Biol; 1990; 267():235-43. PubMed ID: 2088041
    [No Abstract]   [Full Text] [Related]  

  • 2. Temperature field estimation using electrical impedance profiling methods. II. Experimental system description and phantom results.
    Moskowitz MJ; Paulsen KD; Ryan TP; Pang D
    Int J Hyperthermia; 1994; 10(2):229-45. PubMed ID: 8064182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applied potential tomography for non-invasive temperature mapping in hyperthermia.
    Griffiths H; Ahmed A
    Clin Phys Physiol Meas; 1987; 8 Suppl A():147-53. PubMed ID: 3568564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental assessment of electrical impedance imaging for hyperthermia monitoring.
    Conway J; Hawley M; Mangnall Y; Amasha H; van Rhoon GC
    Clin Phys Physiol Meas; 1992; 13 Suppl A():185-9. PubMed ID: 1587098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative assessment of impedance tomography for temperature measurements in hyperthermia.
    Blad B; Persson B; Lindström K
    Int J Hyperthermia; 1992; 8(1):33-43. PubMed ID: 1545162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical applications of electrical impedance tomography.
    Dijkstra AM; Brown BH; Leathard AD; Harris ND; Barber DC; Edbrooke DL
    J Med Eng Technol; 1993; 17(3):89-98. PubMed ID: 8263905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical impedance tomography for thermal monitoring of hyperthermia treatment: an assessment using in vitro and in vivo measurements.
    Conway J
    Clin Phys Physiol Meas; 1987; 8 Suppl A():141-6. PubMed ID: 3568563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high frequency electrical impedance tomograph using distributed parallel input channels.
    Jossinet J; Trillaud C; Risacher F; McAdams ET
    Med Prog Technol; 1993-1994; 19(4):167-72. PubMed ID: 8052171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impedance imaging using induced currents.
    Freeston IL; Tozer RC
    Physiol Meas; 1995 Aug; 16(3 Suppl A):A257-66. PubMed ID: 8528123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A prototype system and reconstruction algorithms for electrical impedance technique in medical body imaging.
    Kim Y; Woo HW
    Clin Phys Physiol Meas; 1987; 8 Suppl A():63-70. PubMed ID: 3568573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative assessment of impedance tomography for temperature measurements in microwave hyperthermia.
    Amasha HM; Anderson AP; Conway J; Barber DC
    Clin Phys Physiol Meas; 1988; 9 Suppl A():49-53. PubMed ID: 3240649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical impedance tomography: prospects for non-invasive control of deep hyperthermia treatments.
    Hawley MS; Conway J; Amasha H; Mangnall YF; van Rhoon GC
    Front Med Biol Eng; 1992; 4(2):119-28. PubMed ID: 1510884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility study of monitoring temperature rise in muscle phantoms by the Electrical Impedance Tomography system during hyperthermia treatment.
    Woo H; Kim Y; Guy A
    J Microw Power Electromagn Energy; 1990; 25(4):241-9. PubMed ID: 2074526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Part-body hyperthermia with a radiofrequency multiantenna applicator under online control in a 1.5 T MR-tomograph].
    Wust P; Gellermann J; Seebass M; Fähling H; Turner P; Wlodarczyk W; Nadobny J; Rau B; Hildebrandt B; Oppelt A; Schlag PM; Felix R
    Rofo; 2004 Mar; 176(3):363-74. PubMed ID: 15026950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of different stimulation and measurement patterns based on internal electrode: application in cardiac impedance tomography.
    Nasehi Tehrani J; Oh TI; Jin C; Thiagalingam A; McEwan A
    Comput Biol Med; 2012 Nov; 42(11):1122-32. PubMed ID: 23017828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature field estimation using electrical impedance profiling methods. I. Reconstruction algorithm and simulated results.
    Paulsen KD; Moskowitz MJ; Ryan TP
    Int J Hyperthermia; 1994; 10(2):209-28. PubMed ID: 8064181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of three-dimensional software EIT (electrical impedance tomography) phantoms by the finite element method.
    Kuzuoglu M; Moh'dSaid M; Ider YZ
    Clin Phys Physiol Meas; 1992; 13 Suppl A():135-8. PubMed ID: 1587087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method of MRI-based thermal modelling for a RF phased array.
    Das SK; Jones EA; Samulski TV
    Int J Hyperthermia; 2001; 17(6):465-82. PubMed ID: 11719964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Errors due to measuring voltage on current-carrying electrodes in electric current computed tomography.
    Cheng KS; Simske SJ; Isaacson D; Newell JC; Gisser DG
    IEEE Trans Biomed Eng; 1990 Jan; 37(1):60-5. PubMed ID: 2303271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lobe based image reconstruction in Electrical Impedance Tomography.
    Schullcke B; Gong B; Krueger-Ziolek S; Tawhai M; Adler A; Mueller-Lisse U; Moeller K
    Med Phys; 2017 Feb; 44(2):426-436. PubMed ID: 28121374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.