BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2088047)

  • 1. Experimental use of extensive pre-cooling of subcutaneous fatty tissues in radiofrequency capacitive heating.
    van Rhoon GC; van der Zee J; Broekmeyer-Reurink MP; Kansen PJ; Kuijs AE; Visser AG; Reinhold HS
    Adv Exp Med Biol; 1990; 267():305-10. PubMed ID: 2088047
    [No Abstract]   [Full Text] [Related]  

  • 2. Radiofrequency capacitive heating of deep-seated tumours using pre-cooling of the subcutaneous tissues: results on thermometry in Dutch patients.
    van Rhoon GC; van der Zee J; Broekmeyer-Reurink MP; Visser AG; Reinhold HS
    Int J Hyperthermia; 1992; 8(6):843-54. PubMed ID: 1479209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-heating characteristics of an RF capacitive heating device.
    Kato H; Hiraoka M; Nakajima T; Ishida T
    Int J Hyperthermia; 1985; 1(1):15-28. PubMed ID: 3915511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precooling prevents overheating of subcutaneous fat in the use of RF capacitive heating.
    Rhee JG; Lee CK; Osborn J; Levitt SH; Song CW
    Int J Radiat Oncol Biol Phys; 1991 May; 20(5):1009-15. PubMed ID: 2022500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiofrequency capacitive hyperthermia for deep-seated tumors. I. Studies on thermometry.
    Hiraoka M; Jo S; Akuta K; Nishimura Y; Takahashi M; Abe M
    Cancer; 1987 Jul; 60(1):121-7. PubMed ID: 3581026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Further observations on tissue heating patterns using an invasive ground probe with radiofrequency hyperthermia system.
    Yamanashi WS; Boddie AW; Frazer JW; McBride CM; Martin RG
    Med Instrum; 1984; 18(4):220-3. PubMed ID: 6493095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperthermia dough: a fat and bone equivalent phantom to test microwave/radiofrequency hyperthermia heating systems.
    Lagendijk JJ; Nilsson P
    Phys Med Biol; 1985 Jul; 30(7):709-12. PubMed ID: 4023060
    [No Abstract]   [Full Text] [Related]  

  • 8. Control of specific absorption rate distribution using capacitive electrodes and inductive aperture-type applicators: implications for radiofrequency hyperthermia.
    Kato H; Hand JW; Prior MV; Furukawa M; Yamamoto O; Ishida T
    IEEE Trans Biomed Eng; 1991 Jul; 38(7):644-7. PubMed ID: 1879856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation by MR imaging of in vivo temperature changes induced by radio frequency hyperthermia.
    Hall AS; Prior MV; Hand JW; Young IR; Dickinson RJ
    J Comput Assist Tomogr; 1990; 14(3):430-6. PubMed ID: 2335613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature distributions induced in pig tissues by a water-cooled disk electrode rf system.
    Prionas SD; Hahn GM
    Med Phys; 1984; 11(1):22-5. PubMed ID: 6230517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation.
    Kim KS; Hernandez D; Lee SY
    Biomed Eng Online; 2015 Oct; 14():95. PubMed ID: 26499058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bladder cooling in patients treated with regional hyperthermia of the pelvis using an annular phased array.
    Kapp DS; Prionas SD; Fessenden P; Liu FF; Lee ER; Lohrbach AW
    Int J Radiat Oncol Biol Phys; 1988 Jun; 14(6):1307-10. PubMed ID: 3384729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induced loco-regional hyperthermia. Significance of vascularization.
    Werner J; Brinck H
    Ann N Y Acad Sci; 1997 Mar; 813():51-5. PubMed ID: 9100861
    [No Abstract]   [Full Text] [Related]  

  • 14. Regional hyperthermia by magnetic induction in a beagle dog model: analysis of thermal dosimetry.
    Oleson JR; Assaad A; Dewhirst MW; DeYoung DW; Grochowski KJ; Sim DA
    Radiat Res; 1984 Jun; 98(3):445-55. PubMed ID: 6729045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry.
    Kim KS; Lee SY
    Int J Hyperthermia; 2015; 31(8):831-9. PubMed ID: 26555005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep regional hyperthermia for the whole thoracic region using 8 MHz radiofrequency-capacitive heating device: relationship between the radiofrequency-output power and the intra-oesophageal temperature and predictive factors for a good heating in 59 patients.
    Ohguri T; Yahara K; Moon SD; Yamaguchi S; Imada H; Terashima H; Korogi Y
    Int J Hyperthermia; 2011; 27(1):20-6. PubMed ID: 20858084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of temperature rise in bladder cancer and surrounding tissues during radiofrequency hyperthermia.
    Uchibayashi T; Nakajima K; Hisazumi H; Mihara S; Yamamoto H; Koshida K
    Eur Urol; 1992; 21(4):299-303. PubMed ID: 1459152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and clinical evaluation of a prototype hyperthermia system.
    Uozumi H; Baba Y; Yasunaga T; Takahashi M
    Radiat Med; 1987; 5(4):142-50. PubMed ID: 3321198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Multifield local hyperthermia as a method for heating deeply located neck tissues].
    Tsyganov AI; Rozenfel'd LG; Bykov VL; Martyniuk LA; Gusev AN
    Eksp Onkol; 1986; 8(3):68-70. PubMed ID: 3720643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The practical use of thermocouples for temperature measurement in clinical hyperthermia.
    Carnochan P; Dickinson RJ; Joiner MC
    Int J Hyperthermia; 1986; 2(1):1-19. PubMed ID: 3522765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.