These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 2088051)
21. Absorbed power deposition for various insertion depths for 915 MHz interstitial dipole antenna arrays: experiment versus theory. Ryan TP; Mechling JA; Strohbehn JW Int J Radiat Oncol Biol Phys; 1990 Aug; 19(2):377-87. PubMed ID: 2394617 [TBL] [Abstract][Full Text] [Related]
22. [OMRON RF hyperthermia treatment system HEH-500 C]. Nakase Y Gan No Rinsho; 1986 Oct; 32(13):1638-43. PubMed ID: 3795483 [TBL] [Abstract][Full Text] [Related]
23. The concept of using multifrequency energy transmission to reduce hot spots during deep-body hyperthermia. Jacobsen S; Melandsø F Ann Biomed Eng; 2002 Jan; 30(1):34-43. PubMed ID: 11874140 [TBL] [Abstract][Full Text] [Related]
24. Control of the physical parameters in local electromagnetic hyperthermia. Pace M; Bini M; Millanta L Adv Exp Med Biol; 1990; 267():297-303. PubMed ID: 2088046 [TBL] [Abstract][Full Text] [Related]
25. Performance and use of current sheet antennae for RF-hyperthermia of a phantom monitored by 3 tesla MR-thermography. Hoffmann W; Rhein KH; Wojcik F; Noeske R; Seifert F; Wlodarczyk W; Fähling H; Wust P; Rinneberg H Int J Hyperthermia; 2002; 18(5):454-71. PubMed ID: 12227931 [TBL] [Abstract][Full Text] [Related]
26. New inductive applicators for electromagnetic hyperthermia. Kashyap S; Wyslouzil W J Microw Power Electromagn Energy; 1987; 22(1):13-8. PubMed ID: 3598825 [TBL] [Abstract][Full Text] [Related]
27. Body conformal antennas for superficial hyperthermia: the impact of bending contact flexible microstrip applicators on their electromagnetic behavior. Correia D; Kok HP; de Greef M; Bel A; van Wieringen N; Crezee J IEEE Trans Biomed Eng; 2009 Dec; 56(12):2917-26. PubMed ID: 19695983 [TBL] [Abstract][Full Text] [Related]
28. Quantitative validation of the 3D SAR profile of hyperthermia applicators using the gamma method. de Bruijne M; Samaras T; Chavannes N; van Rhoon GC Phys Med Biol; 2007 Jun; 52(11):3075-88. PubMed ID: 17505090 [TBL] [Abstract][Full Text] [Related]
29. Theoretical and experimental analysis of air cooling for intracavitary microwave hyperthermia applicators. Yeh MM; Trembly BS; Douple EB; Ryan TP; Hoopes PJ; Jonsson E; Heaney JA IEEE Trans Biomed Eng; 1994 Sep; 41(9):874-82. PubMed ID: 7959814 [TBL] [Abstract][Full Text] [Related]
30. Low-frequency RF hyperthermia: IV--A 27 MHz hybrid applicator for localized deep tumor heating. Franconi C; Raganella L; Tiberio CA IEEE Trans Biomed Eng; 1991 Mar; 38(3):287-93. PubMed ID: 2066143 [TBL] [Abstract][Full Text] [Related]
31. The measurement of fringing fields in a radio-frequency hyperthermia array with emphasis on bolus size. Wiersma J; van Dijk JD; Sijbrands J; Schneider CJ Int J Hyperthermia; 1998; 14(6):535-51. PubMed ID: 9886661 [TBL] [Abstract][Full Text] [Related]
32. Microstrip-antenna design for hyperthermia treatment of superficial tumors. Montecchia F IEEE Trans Biomed Eng; 1992 Jun; 39(6):580-8. PubMed ID: 1601439 [TBL] [Abstract][Full Text] [Related]
33. [Measures of specific absorption rate (SAR) in microwave hyperthermic oncology and the influence of the dynamic bolus on clinical practice]. Marini P; Guiot C; Baiotto B; Gabriele P Radiol Med; 2001 Sep; 102(3):159-67. PubMed ID: 11677459 [TBL] [Abstract][Full Text] [Related]
34. Field analysis of a tape helix with embedded bio-media for microwave hyperthermia. Pathak SK; Singh SP J Med Eng Technol; 1996; 20(1):24-33. PubMed ID: 8744164 [TBL] [Abstract][Full Text] [Related]
35. An edge-element based finite element model of microwave heating in hyperthermia: application to a bolus design. Kumaradas JC; Sherar MD Int J Hyperthermia; 2002; 18(5):441-53. PubMed ID: 12227930 [TBL] [Abstract][Full Text] [Related]
36. [Design of broadband power divider in microwave hyperthermia system]. Sun B; Jiang G; Lu X; Cao Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Oct; 27(5):974-7. PubMed ID: 21089651 [TBL] [Abstract][Full Text] [Related]
37. SAR distributions in interstitial microwave antenna arrays with a single dipole displacement. Clibbon KL; McCowen A; Hand JW IEEE Trans Biomed Eng; 1993 Sep; 40(9):925-32. PubMed ID: 8288284 [TBL] [Abstract][Full Text] [Related]
38. [Evaluation of ultrasound hyperthermia system with a phantom model]. Ono S; Hirose T; Shiba T; Kuriya K; Watanabe K Nihon Igaku Hoshasen Gakkai Zasshi; 1996 Mar; 56(4):195-200. PubMed ID: 8992456 [TBL] [Abstract][Full Text] [Related]
39. Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia. Chakaravarthi G; Arunachalam K Int J Hyperthermia; 2015; 31(7):737-48. PubMed ID: 26365603 [TBL] [Abstract][Full Text] [Related]
40. Visualization by a matrix of light-emitting diodes of interference effects from a radiative four-applicator hyperthermia system. Schneider C; Van Dijk JD Int J Hyperthermia; 1991; 7(2):355-66. PubMed ID: 1880460 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]