These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 20880530)

  • 1. Growth and surface folding of esophageal mucosa: a biomechanical model.
    Li B; Cao YP; Feng XQ
    J Biomech; 2011 Jan; 44(1):182-8. PubMed ID: 20880530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain-energy function and three-dimensional stress distribution in esophageal biomechanics.
    Sokolis DP
    J Biomech; 2010 Oct; 43(14):2753-64. PubMed ID: 20705294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instability of the two-layered thick-walled esophageal model under the external pressure and circular outer boundary condition.
    Yang W; Fung TC; Chian KS; Chong CK
    J Biomech; 2007; 40(3):481-90. PubMed ID: 16677658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical behaviour of oesophageal tissues: material and structural configuration, experimental data and constitutive analysis.
    Natali AN; Carniel EL; Gregersen H
    Med Eng Phys; 2009 Nov; 31(9):1056-62. PubMed ID: 19651531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and residual stresses of arterial walls.
    Ren JS
    J Theor Biol; 2013 Nov; 337():80-8. PubMed ID: 23968891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Mechanical properties of the layered esophagus: experiment and constitutive model.
    Yang W; Fung TC; Chian KS; Chong CK
    J Biomech Eng; 2006 Dec; 128(6):899-908. PubMed ID: 17154692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The oesophageal zero-stress state and mucosal folding from a GIOME perspective.
    Liao D; Zhao J; Yang J; Gregersen H
    World J Gastroenterol; 2007 Mar; 13(9):1347-51. PubMed ID: 17457964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical and histomorphometric esophageal remodeling in type 2 diabetic GK rats.
    Zhao J; Liao D; Gregersen H
    J Diabetes Complications; 2007; 21(1):34-40. PubMed ID: 17189872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element modelling of the tricuspid valve: A preliminary study.
    Stevanella M; Votta E; Lemma M; Antona C; Redaelli A
    Med Eng Phys; 2010 Dec; 32(10):1213-23. PubMed ID: 20869291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional finite element model of the two-layered oesophagus, including the effects of residual strains and buckling of mucosa.
    Yang W; Fung TC; Chian KS; Chong CK
    Proc Inst Mech Eng H; 2007 May; 221(4):417-26. PubMed ID: 17605399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical and histological characteristics of passive esophagus: experimental investigation and comparative constitutive modeling.
    Stavropoulou EA; Dafalias YF; Sokolis DP
    J Biomech; 2009 Dec; 42(16):2654-63. PubMed ID: 19766221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element modeling of optic nerve head biomechanics.
    Sigal IA; Flanagan JG; Tertinegg I; Ethier CR
    Invest Ophthalmol Vis Sci; 2004 Dec; 45(12):4378-87. PubMed ID: 15557446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directional, regional, and layer variations of mechanical properties of esophageal tissue and its interpretation using a structure-based constitutive model.
    Yang W; Fung TC; Chian KS; Chong CK
    J Biomech Eng; 2006 Jun; 128(3):409-18. PubMed ID: 16706590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A micromechanical hyperelastic modeling of brain white matter under large deformation.
    Karami G; Grundman N; Abolfathi N; Naik A; Ziejewski M
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):243-54. PubMed ID: 19627829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D biomechanical properties of the layered esophagus: Fung-type SEF and new constitutive model.
    Ren P; Deng X; Li K; Li G; Li W
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1775-1788. PubMed ID: 34132899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structural fingertip model for simulating of the biomechanics of tactile sensation.
    Wu JZ; Dong RG; Rakheja S; Schopper AW; Smutz WP
    Med Eng Phys; 2004 Mar; 26(2):165-75. PubMed ID: 15036184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical response of a lumbar intervertebral disc to manual lifting activities: a poroelastic finite element model study.
    Natarajan RN; Lavender SA; An HA; Andersson GB
    Spine (Phila Pa 1976); 2008 Aug; 33(18):1958-65. PubMed ID: 18708928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.