These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 20880530)

  • 21. Biomechanical modelling of normal pressure hydrocephalus.
    Dutta-Roy T; Wittek A; Miller K
    J Biomech; 2008 Jul; 41(10):2263-71. PubMed ID: 18534602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The oesophageal zero-stress state and mucosal folding from a GIOME perspective.
    Liao D; Zhao J; Yang J; Gregersen H
    World J Gastroenterol; 2007 Mar; 13(9):1347-51. PubMed ID: 17457964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The development and characterization of an organotypic tissue-engineered human esophageal mucosal model.
    Green N; Huang Q; Khan L; Battaglia G; Corfe B; MacNeil S; Bury JP
    Tissue Eng Part A; 2010 Mar; 16(3):1053-64. PubMed ID: 19845463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-time patient-specific finite element analysis of internal stresses in the soft tissues of a residual limb: a new tool for prosthetic fitting.
    Portnoy S; Yarnitzky G; Yizhar Z; Kristal A; Oppenheim U; Siev-Ner I; Gefen A
    Ann Biomed Eng; 2007 Jan; 35(1):120-35. PubMed ID: 17120139
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool.
    Fernandez JW; Hunter PJ
    Biomech Model Mechanobiol; 2005 Aug; 4(1):20-38. PubMed ID: 15959816
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue.
    Bischoff JE; Arruda EM; Grosh K
    Biomech Model Mechanobiol; 2004 Sep; 3(1):56-65. PubMed ID: 15278837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of internal pressure and surface tension on the growth-induced wrinkling of mucosae.
    Xie WH; Li B; Cao YP; Feng XQ
    J Mech Behav Biomed Mater; 2014 Jan; 29():594-601. PubMed ID: 23768627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical properties of the layered oesophagus and its remodelling in experimental type-1 diabetes.
    Yang J; Zhao J; Liao D; Gregersen H
    J Biomech; 2006; 39(5):894-904. PubMed ID: 16488228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanical analysis of penile erections: penile buckling behaviour under axial loading and radial compression.
    Timm GW; Elayaperumal S; Hegrenes J
    BJU Int; 2008 Jul; 102(1):76-84. PubMed ID: 18336615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-layered quasi-3D finite element model of the oesophagus.
    Liao D; Zhao J; Fan Y; Gregersen H
    Med Eng Phys; 2004 Sep; 26(7):535-43. PubMed ID: 15271281
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of the material properties on the biomechanical behavior of the pelvic floor muscles during vaginal delivery.
    Parente MP; Natal Jorge RM; Mascarenhas T; Fernandes AA; Martins JA
    J Biomech; 2009 Jun; 42(9):1301-6. PubMed ID: 19375709
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A mathematical analysis of shrinkage stress development in dental composite restorations during resin polymerization.
    Li J; Li H; Fok SL
    Dent Mater; 2008 Jul; 24(7):923-31. PubMed ID: 18191446
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of homeostatic elastic moduli in two layers of the esophagus.
    Gregersen H; Liao D; Fung YC
    J Biomech Eng; 2008 Feb; 130(1):011005. PubMed ID: 18298181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite element analysis of an elastic model of the brain: distortion due to acute epidural hematoma--the role of the intra-ventricular pressure gradient.
    Saberi H; Seddighi AS; Farmanzad F
    Comput Aided Surg; 2007 Mar; 12(2):131-6. PubMed ID: 17487663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydro-mechanical coupling in the periodontal ligament: a porohyperelastic finite element model.
    Bergomi M; Cugnoni J; Galli M; Botsis J; Belser UC; Wiskott HW
    J Biomech; 2011 Jan; 44(1):34-8. PubMed ID: 20825940
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A nonlinear finite element model of cartilage growth.
    Davol A; Bingham MS; Sah RL; Klisch SM
    Biomech Model Mechanobiol; 2008 Aug; 7(4):295-307. PubMed ID: 17701433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomechanical 3-D finite element modeling of the human breast using MRI data.
    Samani A; Bishop J; Yaffe MJ; Plewes DB
    IEEE Trans Med Imaging; 2001 Apr; 20(4):271-9. PubMed ID: 11370894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Biomechanical mechanisms of overuse injuries of second plantar longitudinal arch in flatfoot].
    Wu LJ; Zhong SZ; Li YK; Zhao WD
    Zhonghua Yi Xue Za Zhi; 2004 Jun; 84(12):1000-4. PubMed ID: 15312534
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A visco-hyperelastic model for skeletal muscle tissue under high strain rates.
    Lu YT; Zhu HX; Richmond S; Middleton J
    J Biomech; 2010 Sep; 43(13):2629-32. PubMed ID: 20566197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.