BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20880672)

  • 1. Surface oxide net charge of a titanium alloy: comparison between effects of treatment with heat or radiofrequency plasma glow discharge.
    MacDonald DE; Rapuano BE; Schniepp HC
    Colloids Surf B Biointerfaces; 2011 Jan; 82(1):173-81. PubMed ID: 20880672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface oxide net charge of a titanium alloy: modulation of fibronectin-activated attachment and spreading of osteogenic cells.
    Rapuano BE; MacDonald DE
    Colloids Surf B Biointerfaces; 2011 Jan; 82(1):95-103. PubMed ID: 20884181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat and radiofrequency plasma glow discharge pretreatment of a titanium alloy: evidence [corrected] for enhanced osteoinductive properties.
    Rapuano BE; Singh H; Boskey AL; Doty SB; MacDonald DE
    J Cell Biochem; 2013 Aug; 114(8):1917-27. PubMed ID: 23494951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment.
    MacDonald DE; Rapuano BE; Deo N; Stranick M; Somasundaran P; Boskey AL
    Biomaterials; 2004 Jul; 25(16):3135-46. PubMed ID: 14980408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat and radiofrequency plasma glow discharge pretreatment of a titanium alloy promote bone formation and osseointegration.
    MacDonald DE; Rapuano BE; Vyas P; Lane JM; Meyers K; Wright T
    J Cell Biochem; 2013 Oct; 114(10):2363-74. PubMed ID: 23649564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cleaning and heat-treatment effects on unalloyed titanium implant surfaces.
    Kilpadi DV; Lemons JE; Liu J; Raikar GN; Weimer JJ; Vohra Y
    Int J Oral Maxillofac Implants; 2000; 15(2):219-30. PubMed ID: 10795454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Titanium alloy surface oxide modulates the conformation of adsorbed fibronectin to enhance its binding to α(5) β(1) integrins in osteoblasts.
    Rapuano BE; Lee JJ; MacDonald DE
    Eur J Oral Sci; 2012 Jun; 120(3):185-94. PubMed ID: 22607334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat or radiofrequency plasma glow discharge treatment of a titanium alloy stimulates osteoblast gene expression in the MC3T3 osteoprogenitor cell line.
    Rapuano BE; Hackshaw K; Macdonald DE
    J Periodontal Implant Sci; 2012 Jun; 42(3):95-104. PubMed ID: 22803011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved in vitro angiogenic behavior on anodized titanium dioxide nanotubes.
    Beltrán-Partida E; Valdéz-Salas B; Moreno-Ulloa A; Escamilla A; Curiel MA; Rosales-Ibáñez R; Villarreal F; Bastidas DM; Bastidas JM
    J Nanobiotechnology; 2017 Jan; 15(1):10. PubMed ID: 28143540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-scale characterization and biological evaluation of composite surface layers produced under glow discharge conditions on NiTi shape memory alloy for potential cardiological application.
    Chlanda A; Witkowska J; Morgiel J; Nowińska K; Choińska E; Swieszkowski W; Wierzchoń T
    Micron; 2018 Nov; 114():14-22. PubMed ID: 30056255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma nitriding of titanium alloy: Effect of roughness, hardness, biocompatibility, and bonding with bone cement.
    Khandaker M; Riahinezhad S; Li Y; Vaughan MB; Sultana F; Morris TL; Phinney L; Hossain K
    Biomed Mater Eng; 2016 Nov; 27(5):461-474. PubMed ID: 27885994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of oxide layers of commercially pure titanium in response to cleaning procedures.
    Machnee CH; Wagner WC; Jaarda MJ; Lang BR
    Int J Oral Maxillofac Implants; 1993; 8(5):529-33. PubMed ID: 8112792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of passivation treatments on titanium alloy with nanometric scale roughness and induced changes in fibroblast initial adhesion evaluated by a cytodetacher.
    Wang CC; Hsu YC; Su FC; Lu SC; Lee TM
    J Biomed Mater Res A; 2009 Feb; 88(2):370-83. PubMed ID: 18306287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface characterization of radio-frequency glow discharged and autoclaved titanium surfaces.
    Kawahara D; Ong JL; Raikar GN; Lucas LC; Lemons JE; Nakamura M
    Int J Oral Maxillofac Implants; 1996; 11(4):435-42. PubMed ID: 8803338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of surface treatments developed for oral implants on the physical and biological properties of titanium. (I) Surface characterization.
    Taborelli M; Jobin M; François P; Vaudaux P; Tonetti M; Szmukler-Moncler S; Simpson JP; Descouts P
    Clin Oral Implants Res; 1997 Jun; 8(3):208-16. PubMed ID: 9586465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of sterilization processes on NiTi alloy: surface characterization.
    Thierry B; Tabrizian M; Savadogo O; Yahia L
    J Biomed Mater Res; 2000 Jan; 49(1):88-98. PubMed ID: 10559750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low pressure radio-frequency oxygen plasma induced oxidation of titanium--surface characteristics and biological effects.
    Tseng WY; Hsu SH; Huang CH; Tu YC; Tseng SC; Chen HL; Chen MH; Su WF; Lin LD
    PLoS One; 2013; 8(12):e84898. PubMed ID: 24386433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface characterization of titanium-based implant materials.
    Placko HE; Mishra S; Weimer JJ; Lucas LC
    Int J Oral Maxillofac Implants; 2000; 15(3):355-63. PubMed ID: 10874800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructure and biocompatibility of titanium oxides produced on nitrided surface layer under glow discharge conditions.
    Czarnowska E; Morgiel J; Ossowski M; Major R; Sowinska A; Wierzchon T
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8917-23. PubMed ID: 22400281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of Ti-6Al-7Nb titanium alloy nitrocarburized under glow discharge conditions.
    Kajzer A; Grzeszczuk O; Kajzer W; Nowińska K; Kaczmarek M; Tarnowski M; Wierzchoń T
    Acta Bioeng Biomech; 2017; 19(4):181-188. PubMed ID: 29507440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.