BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 20881045)

  • 1. The innate immune adaptor molecule MyD88 restricts West Nile virus replication and spread in neurons of the central nervous system.
    Szretter KJ; Daffis S; Patel J; Suthar MS; Klein RS; Gale M; Diamond MS
    J Virol; 2010 Dec; 84(23):12125-38. PubMed ID: 20881045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toll-like receptor 3 has a protective role against West Nile virus infection.
    Daffis S; Samuel MA; Suthar MS; Gale M; Diamond MS
    J Virol; 2008 Nov; 82(21):10349-58. PubMed ID: 18715906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pattern recognition receptor MDA5 modulates CD8+ T cell-dependent clearance of West Nile virus from the central nervous system.
    Lazear HM; Pinto AK; Ramos HJ; Vick SC; Shrestha B; Suthar MS; Gale M; Diamond MS
    J Virol; 2013 Nov; 87(21):11401-15. PubMed ID: 23966390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of IFN-beta and the innate antiviral response in myeloid cells occurs through an IPS-1-dependent signal that does not require IRF-3 and IRF-7.
    Daffis S; Suthar MS; Szretter KJ; Gale M; Diamond MS
    PLoS Pathog; 2009 Oct; 5(10):e1000607. PubMed ID: 19798431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IPS-1 is essential for the control of West Nile virus infection and immunity.
    Suthar MS; Ma DY; Thomas S; Lund JM; Zhang N; Daffis S; Rudensky AY; Bevan MJ; Clark EA; Kaja MK; Diamond MS; Gale M
    PLoS Pathog; 2010 Feb; 6(2):e1000757. PubMed ID: 20140199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IL-1β signaling promotes CNS-intrinsic immune control of West Nile virus infection.
    Ramos HJ; Lanteri MC; Blahnik G; Negash A; Suthar MS; Brassil MM; Sodhi K; Treuting PM; Busch MP; Norris PJ; Gale M
    PLoS Pathog; 2012; 8(11):e1003039. PubMed ID: 23209411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-specific IRF-3 responses protect against West Nile virus infection by interferon-dependent and -independent mechanisms.
    Daffis S; Samuel MA; Keller BC; Gale M; Diamond MS
    PLoS Pathog; 2007 Jul; 3(7):e106. PubMed ID: 17676997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systems biology approach reveals that tissue tropism to West Nile virus is regulated by antiviral genes and innate immune cellular processes.
    Suthar MS; Brassil MM; Blahnik G; McMillan A; Ramos HJ; Proll SC; Belisle SE; Katze MG; Gale M
    PLoS Pathog; 2013 Feb; 9(2):e1003168. PubMed ID: 23544010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2'-O methylation of the viral mRNA cap by West Nile virus evades ifit1-dependent and -independent mechanisms of host restriction in vivo.
    Szretter KJ; Daniels BP; Cho H; Gainey MD; Yokoyama WM; Gale M; Virgin HW; Klein RS; Sen GC; Diamond MS
    PLoS Pathog; 2012; 8(5):e1002698. PubMed ID: 22589727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. West Nile Virus Infection Blocks Inflammatory Response and T Cell Costimulatory Capacity of Human Monocyte-Derived Dendritic Cells.
    Zimmerman MG; Bowen JR; McDonald CE; Pulendran B; Suthar MS
    J Virol; 2019 Dec; 93(23):. PubMed ID: 31534040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interferon regulatory factor IRF-7 induces the antiviral alpha interferon response and protects against lethal West Nile virus infection.
    Daffis S; Samuel MA; Suthar MS; Keller BC; Gale M; Diamond MS
    J Virol; 2008 Sep; 82(17):8465-75. PubMed ID: 18562536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TLR signaling controls lethal encephalitis in WNV-infected brain.
    Sabouri AH; Marcondes MC; Flynn C; Berger M; Xiao N; Fox HS; Sarvetnick NE
    Brain Res; 2014 Jul; 1574():84-95. PubMed ID: 24928618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendritic cell-associated MAVS is required to control West Nile virus replication and ensuing humoral immune responses.
    Roe K; Giordano D; Young LB; Draves KE; Holder U; Suthar MS; Gale M; Clark EA
    PLoS One; 2019; 14(6):e0218928. PubMed ID: 31242236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Interferon-Stimulated Gene Ifi27l2a Restricts West Nile Virus Infection and Pathogenesis in a Cell-Type- and Region-Specific Manner.
    Lucas TM; Richner JM; Diamond MS
    J Virol; 2015 Dec; 90(5):2600-15. PubMed ID: 26699642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis.
    Gorman MJ; Poddar S; Farzan M; Diamond MS
    J Virol; 2016 Sep; 90(18):8212-25. PubMed ID: 27384652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interferon regulatory factor-1 (IRF-1) shapes both innate and CD8(+) T cell immune responses against West Nile virus infection.
    Brien JD; Daffis S; Lazear HM; Cho H; Suthar MS; Gale M; Diamond MS
    PLoS Pathog; 2011 Sep; 7(9):e1002230. PubMed ID: 21909274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival.
    Samuel MA; Diamond MS
    J Virol; 2005 Nov; 79(21):13350-61. PubMed ID: 16227257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A temporal role of type I interferon signaling in CD8+ T cell maturation during acute West Nile virus infection.
    Pinto AK; Daffis S; Brien JD; Gainey MD; Yokoyama WM; Sheehan KC; Murphy KM; Schreiber RD; Diamond MS
    PLoS Pathog; 2011 Dec; 7(12):e1002407. PubMed ID: 22144897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A West Nile virus NS4B-P38G mutant strain induces adaptive immunity via TLR7-MyD88-dependent and independent signaling pathways.
    Xie G; Welte T; Wang J; Whiteman MC; Wicker JA; Saxena V; Cong Y; Barrett AD; Wang T
    Vaccine; 2013 Aug; 31(38):4143-51. PubMed ID: 23845800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TLR3- and MyD88-dependent signaling differentially influences the development of West Nile virus-specific B cell responses in mice following immunization with RepliVAX WN, a single-cycle flavivirus vaccine candidate.
    Xia J; Winkelmann ER; Gorder SR; Mason PW; Milligan GN
    J Virol; 2013 Nov; 87(22):12090-101. PubMed ID: 23986602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.