These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20881052)

  • 1. Introduction of phospholipids to cultured cells with cyclodextrin.
    Kainu V; Hermansson M; Somerharju P
    J Lipid Res; 2010 Dec; 51(12):3533-41. PubMed ID: 20881052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. gamma-cyclodextrins greatly enhance translocation of hydrophobic fluorescent phospholipids from vesicles to cells in culture. Importance of molecular hydrophobicity in phospholipid trafficking studies.
    Tanhuanpää K; Somerharju P
    J Biol Chem; 1999 Dec; 274(50):35359-66. PubMed ID: 10585403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrity of liposomes in presence of cyclodextrins: effect of liposome type and lipid composition.
    Hatzi P; Mourtas S; Klepetsanis PG; Antimisiaris SG
    Int J Pharm; 2007 Mar; 333(1-2):167-76. PubMed ID: 17101248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of vitamin D3 metabolism by cytochrome P450scc (CYP11A1) in phospholipid vesicles and cyclodextrin.
    Tuckey RC; Nguyen MN; Slominski A
    Int J Biochem Cell Biol; 2008; 40(11):2619-26. PubMed ID: 18573681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of cyclodextrins to monitor transbilayer movement and differential lipid affinities of cholesterol.
    Leventis R; Silvius JR
    Biophys J; 2001 Oct; 81(4):2257-67. PubMed ID: 11566796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular cholesterol efflux mediated by cyclodextrins.
    Kilsdonk EP; Yancey PG; Stoudt GW; Bangerter FW; Johnson WJ; Phillips MC; Rothblat GH
    J Biol Chem; 1995 Jul; 270(29):17250-6. PubMed ID: 7615524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sphingomyelin and phosphatidylcholine degradation on cyclodextrin-mediated cholesterol efflux in cultured fibroblasts.
    Ohvo H; Olsio C; Slotte JP
    Biochim Biophys Acta; 1997 Nov; 1349(2):131-41. PubMed ID: 9421186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclodextrins as catalysts for the removal of cholesterol from macrophage foam cells.
    Atger VM; de la Llera Moya M; Stoudt GW; Rodrigueza WV; Phillips MC; Rothblat GH
    J Clin Invest; 1997 Feb; 99(4):773-80. PubMed ID: 9045882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclodextrins: Assessing the Impact of Cavity Size, Occupancy, and Substitutions on Cytotoxicity and Cholesterol Homeostasis.
    Szente L; Singhal A; Domokos A; Song B
    Molecules; 2018 May; 23(5):. PubMed ID: 29783784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of cyclodextrins for manipulating cellular cholesterol content.
    Christian AE; Haynes MP; Phillips MC; Rothblat GH
    J Lipid Res; 1997 Nov; 38(11):2264-72. PubMed ID: 9392424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies.
    Zidovetzki R; Levitan I
    Biochim Biophys Acta; 2007 Jun; 1768(6):1311-24. PubMed ID: 17493580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential regulation of apolipoprotein A-I/ATP binding cassette transporter A1-mediated cholesterol and phospholipid release.
    Yamauchi Y; Abe-Dohmae S; Yokoyama S
    Biochim Biophys Acta; 2002 Nov; 1585(1):1-10. PubMed ID: 12457709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular phospholipid movement and the role of phospholipid transfer proteins in animal cells.
    Yaffe MP; Kennedy EP
    Biochemistry; 1983 Mar; 22(6):1497-507. PubMed ID: 6838865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efflux of cholesterol from different cellular pools.
    Haynes MP; Phillips MC; Rothblat GH
    Biochemistry; 2000 Apr; 39(15):4508-17. PubMed ID: 10758000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of cyclodextrin and membrane lipid structure upon cyclodextrin-lipid interaction.
    Huang Z; London E
    Langmuir; 2013 Nov; 29(47):14631-8. PubMed ID: 24175704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclodextrin-mediated removal of sterols from monolayers: effects of sterol structure and phospholipids on desorption rate.
    Ohvo H; Slotte JP
    Biochemistry; 1996 Jun; 35(24):8018-24. PubMed ID: 8672506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role for sterol regulatory element-binding protein in activation of endothelial cells by phospholipid oxidation products.
    Yeh M; Cole AL; Choi J; Liu Y; Tulchinsky D; Qiao JH; Fishbein MC; Dooley AN; Hovnanian T; Mouilleseaux K; Vora DK; Yang WP; Gargalovic P; Kirchgessner T; Shyy JY; Berliner JA
    Circ Res; 2004 Oct; 95(8):780-8. PubMed ID: 15388640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connexin channels and phospholipids: association and modulation.
    Locke D; Harris AL
    BMC Biol; 2009 Aug; 7():52. PubMed ID: 19686581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of alpha-cyclodextrin induced hemolysis. 2. A study of the factors controlling the association with serine-, ethanolamine-, and choline-phospholipids.
    Debouzy JC; Fauvelle F; Crouzy S; Girault L; Chapron Y; Göschl M; Gadelle A
    J Pharm Sci; 1998 Jan; 87(1):59-66. PubMed ID: 9452969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of liposomal phospholipid composition on cholesterol transfer between microsomal and liposomal vesicles.
    Bhuvaneswaran C; Mitropoulos KA
    Biochem J; 1986 Sep; 238(3):647-52. PubMed ID: 3800954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.