These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 20881112)

  • 21. Do songbirds hear songs syllable by syllable?
    Mizuhara T; Okanoya K
    Behav Processes; 2020 May; 174():104089. PubMed ID: 32105758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A distributed neural network model for the distinct roles of medial and lateral HVC in zebra finch song production.
    Galvis D; Wu W; Hyson RL; Johnson F; Bertram R
    J Neurophysiol; 2017 Aug; 118(2):677-692. PubMed ID: 28381490
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ensemble coding of vocal control in birdsong.
    Leonardo A; Fee MS
    J Neurosci; 2005 Jan; 25(3):652-61. PubMed ID: 15659602
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural encoding and integration of learned probabilistic sequences in avian sensory-motor circuitry.
    Bouchard KE; Brainard MS
    J Neurosci; 2013 Nov; 33(45):17710-23. PubMed ID: 24198363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Auditory-induced neural dynamics in sensory-motor circuitry predict learned temporal and sequential statistics of birdsong.
    Bouchard KE; Brainard MS
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9641-6. PubMed ID: 27506786
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Species differences in auditory processing dynamics in songbird auditory telencephalon.
    Terleph TA; Mello CV; Vicario DS
    Dev Neurobiol; 2007 Sep; 67(11):1498-510. PubMed ID: 17525994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting plasticity: acute context-dependent changes to vocal performance predict long-term age-dependent changes.
    James LS; Sakata JT
    J Neurophysiol; 2015 Oct; 114(4):2328-39. PubMed ID: 26311186
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sex differences in the telencephalic song control circuitry in Bengalese finches (Lonchura striata var. domestica).
    Tobari Y; Nakamura KZ; Okanoya K
    Zoolog Sci; 2005 Oct; 22(10):1089-94. PubMed ID: 16286720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Statistical learning for vocal sequence acquisition in a songbird.
    James LS; Sun H; Wada K; Sakata JT
    Sci Rep; 2020 Feb; 10(1):2248. PubMed ID: 32041978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A compact statistical model of the song syntax in Bengalese finch.
    Jin DZ; Kozhevnikov AA
    PLoS Comput Biol; 2011 Mar; 7(3):e1001108. PubMed ID: 21445230
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temporal structure in zebra finch song: implications for motor coding.
    Glaze CM; Troyer TW
    J Neurosci; 2006 Jan; 26(3):991-1005. PubMed ID: 16421319
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth and splitting of neural sequences in songbird vocal development.
    Okubo TS; Mackevicius EL; Payne HL; Lynch GF; Fee MS
    Nature; 2015 Dec; 528(7582):352-7. PubMed ID: 26618871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of a forebrain motor programming network for the learned song of zebra finches.
    Vu ET; Mazurek ME; Kuo YC
    J Neurosci; 1994 Nov; 14(11 Pt 2):6924-34. PubMed ID: 7965088
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bengalese finches Lonchura Striata domestica depend upon auditory feedback for the maintenance of adult song.
    Woolley SM; Rubel EW
    J Neurosci; 1997 Aug; 17(16):6380-90. PubMed ID: 9236246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mind the gap: Neural coding of species identity in birdsong prosody.
    Araki M; Bandi MM; Yazaki-Sugiyama Y
    Science; 2016 Dec; 354(6317):1282-1287. PubMed ID: 27940872
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vocal generalization depends on gesture identity and sequence.
    Hoffmann LA; Sober SJ
    J Neurosci; 2014 Apr; 34(16):5564-74. PubMed ID: 24741046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discrete Circuits Support Generalized versus Context-Specific Vocal Learning in the Songbird.
    Tian LY; Brainard MS
    Neuron; 2017 Dec; 96(5):1168-1177.e5. PubMed ID: 29154128
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interhemispheric dominance switching in a neural network model for birdsong.
    Galvis D; Wu W; Hyson RL; Johnson F; Bertram R
    J Neurophysiol; 2018 Sep; 120(3):1186-1197. PubMed ID: 29924715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Altered auditory BOLD response to conspecific birdsong in zebra finches with stuttered syllables.
    Voss HU; Salgado-Commissariat D; Helekar SA
    PLoS One; 2010 Dec; 5(12):e14415. PubMed ID: 21203446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Imaging auditory representations of song and syllables in populations of sensorimotor neurons essential to vocal communication.
    Peh WY; Roberts TF; Mooney R
    J Neurosci; 2015 Apr; 35(14):5589-605. PubMed ID: 25855175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.