BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 20881284)

  • 1. Light-induced retinal degeneration correlates with changes in iron metabolism gene expression, ferritin level, and aging.
    Picard E; Ranchon-Cole I; Jonet L; Beaumont C; Behar-Cohen F; Courtois Y; Jeanny JC
    Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1261-74. PubMed ID: 20881284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased expression of ceruloplasmin in the retina following photic injury.
    Chen L; Dentchev T; Wong R; Hahn P; Wen R; Bennett J; Dunaief JL
    Mol Vis; 2003 Apr; 9():151-8. PubMed ID: 12724641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alteration in iron metabolism during retinal degeneration in rd10 mouse.
    Deleon E; Lederman M; Berenstein E; Meir T; Chevion M; Chowers I
    Invest Ophthalmol Vis Sci; 2009 Mar; 50(3):1360-5. PubMed ID: 18997094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of microglia and chemokines in light-induced retinal degeneration.
    Zhang C; Shen JK; Lam TT; Zeng HY; Chiang SK; Yang F; Tso MO
    Mol Vis; 2005 Oct; 11():887-95. PubMed ID: 16270028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunolocalization and regulation of iron handling proteins ferritin and ferroportin in the retina.
    Hahn P; Dentchev T; Qian Y; Rouault T; Harris ZL; Dunaief JL
    Mol Vis; 2004 Aug; 10():598-607. PubMed ID: 15354085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light damage induced changes in mouse retinal gene expression.
    Chen L; Wu W; Dentchev T; Zeng Y; Wang J; Tsui I; Tobias JW; Bennett J; Baldwin D; Dunaief JL
    Exp Eye Res; 2004 Aug; 79(2):239-47. PubMed ID: 15325571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dysfunction of the retinal pigment epithelium with age: increased iron decreases phagocytosis and lysosomal activity.
    Chen H; Lukas TJ; Du N; Suyeoka G; Neufeld AH
    Invest Ophthalmol Vis Sci; 2009 Apr; 50(4):1895-902. PubMed ID: 19151392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired retinal iron homeostasis associated with defective phagocytosis in Royal College of Surgeons rats.
    Yefimova MG; Jeanny JC; Keller N; Sergeant C; Guillonneau X; Beaumont C; Courtois Y
    Invest Ophthalmol Vis Sci; 2002 Feb; 43(2):537-45. PubMed ID: 11818402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metallothionein-III deficiency exacerbates light-induced retinal degeneration.
    Tsuruma K; Shimazaki H; Ohno Y; Inoue Y; Honda A; Imai S; Lee J; Shimazawa M; Satoh M; Hara H
    Invest Ophthalmol Vis Sci; 2012 Nov; 53(12):7896-903. PubMed ID: 23132798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene expression in the mouse retina: the effect of damaging light.
    Grimm C; Wenzel A; Hafezi F; Remé CE
    Mol Vis; 2000 Dec; 6():252-60. PubMed ID: 11134582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prolonged rhodopsin phosphorylation in light-induced retinal degeneration in rat models.
    Ishikawa F; Ohguro H; Ohguro I; Yamazaki H; Mamiya K; Metoki T; Ito T; Yokoi Y; Nakazawa M
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5204-11. PubMed ID: 17122104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of complement expression in light-induced retinal degeneration: synthesis and deposition of C3 by microglia/macrophages is associated with focal photoreceptor degeneration.
    Rutar M; Natoli R; Kozulin P; Valter K; Gatenby P; Provis JM
    Invest Ophthalmol Vis Sci; 2011 Jul; 52(8):5347-58. PubMed ID: 21571681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NF-kappaB activation in light-induced retinal degeneration in a mouse model.
    Wu T; Chen Y; Chiang SK; Tso MO
    Invest Ophthalmol Vis Sci; 2002 Sep; 43(9):2834-40. PubMed ID: 12202499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photobiomodulation protects the retina from light-induced photoreceptor degeneration.
    Albarracin R; Eells J; Valter K
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(6):3582-92. PubMed ID: 21421867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal function and structure in the hypotransferrinemic mouse.
    Lederman M; Obolensky A; Grunin M; Banin E; Chowers I
    Invest Ophthalmol Vis Sci; 2012 Feb; 53(2):605-12. PubMed ID: 22159020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constant light-induced retinal damage and the RPE65-MET450 variant: assessment of the NZW/LacJ mouse.
    Danciger M; Yang H; Handschumacher L; LaVail MM
    Mol Vis; 2005 May; 11():374-9. PubMed ID: 15947737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eliminating complement factor D reduces photoreceptor susceptibility to light-induced damage.
    Rohrer B; Guo Y; Kunchithapautham K; Gilkeson GS
    Invest Ophthalmol Vis Sci; 2007 Nov; 48(11):5282-9. PubMed ID: 17962484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased metallothionein in light damaged mouse retinas.
    Chen L; Wu W; Dentchev T; Wong R; Dunaief JL
    Exp Eye Res; 2004 Aug; 79(2):287-93. PubMed ID: 15325575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonessential role of beta3 and beta5 integrin subunits for efficient clearance of cellular debris after light-induced photoreceptor degeneration.
    Joly S; Samardzija M; Wenzel A; Thiersch M; Grimm C
    Invest Ophthalmol Vis Sci; 2009 Mar; 50(3):1423-32. PubMed ID: 18997092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron, ferritin, transferrin, and transferrin receptor in the adult rat retina.
    Yefimova MG; Jeanny JC; Guillonneau X; Keller N; Nguyen-Legros J; Sergeant C; Guillou F; Courtois Y
    Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2343-51. PubMed ID: 10892882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.