These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

714 related articles for article (PubMed ID: 20881948)

  • 1. Opponency revisited: competition and cooperation between dopamine and serotonin.
    Boureau YL; Dayan P
    Neuropsychopharmacology; 2011 Jan; 36(1):74-97. PubMed ID: 20881948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serotonin and dopamine: unifying affective, activational, and decision functions.
    Cools R; Nakamura K; Daw ND
    Neuropsychopharmacology; 2011 Jan; 36(1):98-113. PubMed ID: 20736991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of dopamine and serotonin in decision making: evidence from pharmacological experiments in humans.
    Rogers RD
    Neuropsychopharmacology; 2011 Jan; 36(1):114-32. PubMed ID: 20881944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reward and avoidance learning in the context of aversive environments and possible implications for depressive symptoms.
    Sebold M; Garbusow M; Jetzschmann P; Schad DJ; Nebe S; Schlagenhauf F; Heinz A; Rapp M; Romanczuk-Seiferth N
    Psychopharmacology (Berl); 2019 Aug; 236(8):2437-2449. PubMed ID: 31254091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serotonin in affective control.
    Dayan P; Huys QJ
    Annu Rev Neurosci; 2009; 32():95-126. PubMed ID: 19400722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serotonin and dopamine differentially affect appetitive and aversive general Pavlovian-to-instrumental transfer.
    Hebart MN; Gläscher J
    Psychopharmacology (Berl); 2015 Jan; 232(2):437-51. PubMed ID: 25034118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opponent interactions between serotonin and dopamine.
    Daw ND; Kakade S; Dayan P
    Neural Netw; 2002; 15(4-6):603-16. PubMed ID: 12371515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The involvement of nucleus accumbens dopamine in appetitive and aversive motivation.
    Salamone JD
    Behav Brain Res; 1994 Apr; 61(2):117-33. PubMed ID: 8037860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serotonin and aversive Pavlovian control of instrumental behavior in humans.
    Geurts DE; Huys QJ; den Ouden HE; Cools R
    J Neurosci; 2013 Nov; 33(48):18932-9. PubMed ID: 24285898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential, but not opponent, effects of L -DOPA and citalopram on action learning with reward and punishment.
    Guitart-Masip M; Economides M; Huys QJ; Frank MJ; Chowdhury R; Duzel E; Dayan P; Dolan RJ
    Psychopharmacology (Berl); 2014 Mar; 231(5):955-66. PubMed ID: 24232442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pupil dilation reflects effortful action invigoration in overcoming aversive Pavlovian biases.
    Algermissen J; den Ouden HEM
    Cogn Affect Behav Neurosci; 2024 Aug; 24(4):720-739. PubMed ID: 38773022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dopamine signals related to appetitive and aversive events in paradigms that manipulate reward and avoidability.
    Gentry RN; Schuweiler DR; Roesch MR
    Brain Res; 2019 Jun; 1713():80-90. PubMed ID: 30300635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of the conflict monitoring intensity: the role of aversive reinforcement, cognitive demand, and trait-BIS.
    Leue A; Lange S; Beauducel A
    Cogn Affect Behav Neurosci; 2012 Jun; 12(2):287-307. PubMed ID: 22351495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociable roles of the nucleus accumbens D1 and D2 receptors in regulating cue-elicited approach-avoidance conflict decision-making.
    Nguyen D; Fugariu V; Erb S; Ito R
    Psychopharmacology (Berl); 2018 Aug; 235(8):2233-2244. PubMed ID: 29737363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Go and no-go learning in reward and punishment: interactions between affect and effect.
    Guitart-Masip M; Huys QJ; Fuentemilla L; Dayan P; Duzel E; Dolan RJ
    Neuroimage; 2012 Aug; 62(1):154-66. PubMed ID: 22548809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Reward and Aversion Shape Motivation and Decision Making: A Computational Account.
    Verharen JPH; Adan RAH; Vanderschuren LJMJ
    Neuroscientist; 2020 Feb; 26(1):87-99. PubMed ID: 30866712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopamine-Dependent Loss Aversion during Effort-Based Decision-Making.
    Chen X; Voets S; Jenkinson N; Galea JM
    J Neurosci; 2020 Jan; 40(3):661-670. PubMed ID: 31727795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Neural Foundations of Reaction and Action in Aversive Motivation.
    Campese VD; Sears RM; Moscarello JM; Diaz-Mataix L; Cain CK; LeDoux JE
    Curr Top Behav Neurosci; 2016; 27():171-95. PubMed ID: 26643998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets.
    Awata H; Watanabe T; Hamanaka Y; Mito T; Noji S; Mizunami M
    Sci Rep; 2015 Nov; 5():15885. PubMed ID: 26521965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to set the switches on this thing.
    Dayan P
    Curr Opin Neurobiol; 2012 Dec; 22(6):1068-74. PubMed ID: 22704797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.