These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20882397)

  • 1. pK(a) based protonation states and microspecies for protein-ligand docking.
    ten Brink T; Exner TE
    J Comput Aided Mol Des; 2010 Nov; 24(11):935-42. PubMed ID: 20882397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of protonation, tautomeric, and stereoisomeric states on protein-ligand docking results.
    ten Brink T; Exner TE
    J Chem Inf Model; 2009 Jun; 49(6):1535-46. PubMed ID: 19453150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epik: a software program for pK( a ) prediction and protonation state generation for drug-like molecules.
    Shelley JC; Cholleti A; Frye LL; Greenwood JR; Timlin MR; Uchimaya M
    J Comput Aided Mol Des; 2007 Dec; 21(12):681-91. PubMed ID: 17899391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empirical scoring functions for advanced protein-ligand docking with PLANTS.
    Korb O; Stützle T; Exner TE
    J Chem Inf Model; 2009 Jan; 49(1):84-96. PubMed ID: 19125657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-ligand docking against non-native protein conformers.
    Verdonk ML; Mortenson PN; Hall RJ; Hartshorn MJ; Murray CW
    J Chem Inf Model; 2008 Nov; 48(11):2214-25. PubMed ID: 18954138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new test set for validating predictions of protein-ligand interaction.
    Nissink JW; Murray C; Hartshorn M; Verdonk ML; Cole JC; Taylor R
    Proteins; 2002 Dec; 49(4):457-71. PubMed ID: 12402356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating binding affinities by docking/scoring methods using variable protonation states.
    Park MS; Gao C; Stern HA
    Proteins; 2011 Jan; 79(1):304-14. PubMed ID: 21058298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distilling the essential features of a protein surface for improving protein-ligand docking, scoring, and virtual screening.
    Zavodszky MI; Sanschagrin PC; Korde RS; Kuhn LA
    J Comput Aided Mol Des; 2002 Dec; 16(12):883-902. PubMed ID: 12825621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic coupling to pH-titrating sites as a source of cooperativity in protein-ligand binding.
    Spassov V; Bashford D
    Protein Sci; 1998 Sep; 7(9):2012-25. PubMed ID: 9761483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-aided drug design and virtual screening of targeted combinatorial libraries of mixed-ligand transition metal complexes of 2-butanone thiosemicarbazone.
    Khan T; Ahmad R; Azad I; Raza S; Joshi S; Khan AR
    Comput Biol Chem; 2018 Aug; 75():178-195. PubMed ID: 29883916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LEA3D: a computer-aided ligand design for structure-based drug design.
    Douguet D; Munier-Lehmann H; Labesse G; Pochet S
    J Med Chem; 2005 Apr; 48(7):2457-68. PubMed ID: 15801836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 2. Computational titration and pH effects in molecular models of neuraminidase-inhibitor complexes.
    Fornabaio M; Cozzini P; Mozzarelli A; Abraham DJ; Kellogg GE
    J Med Chem; 2003 Oct; 46(21):4487-500. PubMed ID: 14521411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protonation and pK changes in protein-ligand binding.
    Onufriev AV; Alexov E
    Q Rev Biophys; 2013 May; 46(2):181-209. PubMed ID: 23889892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Very fast prediction and rationalization of pKa values for protein-ligand complexes.
    Bas DC; Rogers DM; Jensen JH
    Proteins; 2008 Nov; 73(3):765-83. PubMed ID: 18498103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility.
    Ravindranath PA; Forli S; Goodsell DS; Olson AJ; Sanner MF
    PLoS Comput Biol; 2015 Dec; 11(12):e1004586. PubMed ID: 26629955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of variations of ligand protonation and tautomerism on protein-ligand recognition and binding energy landscape.
    Todorov NP; Monthoux PH; Alberts IL
    J Chem Inf Model; 2006; 46(3):1134-42. PubMed ID: 16711733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of protein-ligand interaction fingerprints in docking.
    Brewerton SC
    Curr Opin Drug Discov Devel; 2008 May; 11(3):356-64. PubMed ID: 18428089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tautomerism in computer-aided drug design.
    Pospisil P; Ballmer P; Scapozza L; Folkers G
    J Recept Signal Transduct Res; 2003; 23(4):361-71. PubMed ID: 14753297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive docking study on the selectivity of binding of aromatic compounds to proteins.
    Hetényi C; Maran U; Karelson M
    J Chem Inf Comput Sci; 2003; 43(5):1576-83. PubMed ID: 14502492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.