These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 20882466)
1. Variation in 8-ketotrichothecenes and zearalenone production by Fusarium graminearum isolates from corn and barley in Korea. Seo JA; Kim JC; Lee DH; Lee YW Mycopathologia; 1996 Apr; 134(1):31-7. PubMed ID: 20882466 [TBL] [Abstract][Full Text] [Related]
2. Natural occurrence of Fusarium mycotoxins (trichothecenes and zearalenone) in barley and corn in Korea. Kim JC; Kang HJ; Lee DH; Lee YW; Yoshizawa T Appl Environ Microbiol; 1993 Nov; 59(11):3798-802. PubMed ID: 8285686 [TBL] [Abstract][Full Text] [Related]
3. Substrate specificities of Fusarium biosynthetic enzymes explain the genetic basis of a mixed chemotype producing both deoxynivalenol and nivalenol-type trichothecenes. Maeda K; Tanaka Y; Matsuyama M; Sato M; Sadamatsu K; Suzuki T; Matsui K; Nakajima Y; Tokai T; Kanamaru K; Ohsato S; Kobayashi T; Fujimura M; Nishiuchi T; Takahashi-Ando N; Kimura M Int J Food Microbiol; 2020 May; 320():108532. PubMed ID: 32004825 [TBL] [Abstract][Full Text] [Related]
4. Trichothecene chemotypes ofFusarium graminearum isolated from corn in Hungary. Szécsi A; Bartók T Mycotoxin Res; 1995 Sep; 11(2):85-92. PubMed ID: 23606115 [TBL] [Abstract][Full Text] [Related]
5. Trichothecene genotypes and production profiles of Fusarium graminearum isolates obtained from barley cultivated in Argentina. Castañares E; Albuquerque DR; Dinolfo MI; Pinto VF; Patriarca A; Stenglein SA Int J Food Microbiol; 2014 Jun; 179():57-63. PubMed ID: 24727383 [TBL] [Abstract][Full Text] [Related]
6. Characterization of Nivalenol-Producing Jang JY; Baek SG; Choi JH; Kim S; Kim J; Kim DW; Yun SH; Lee T Plant Pathol J; 2019 Dec; 35(6):543-552. PubMed ID: 31832035 [No Abstract] [Full Text] [Related]
7. Co-occurrence of Fusarium mycotoxins in mouldy and healthy corn from Korea. Sohn HB; Seo JA; Lee YW Food Addit Contam; 1999 Apr; 16(4):153-8. PubMed ID: 10560568 [TBL] [Abstract][Full Text] [Related]
8. Natural occurrence of acetylated derivatives of deoxynivalenol and nivalenol in wheat and barley in Japan. Yoshizawa T; Jin YZ Food Addit Contam; 1995; 12(5):689-94. PubMed ID: 8522034 [TBL] [Abstract][Full Text] [Related]
9. Comparative Pathogenicity of Shin S; Son JH; Park JC; Kim KH; Yoon YM; Cheong YK; Kim KH; Hyun JN; Park CS; Dill-Macky R; Kang CS Plant Pathol J; 2018 Oct; 34(5):347-355. PubMed ID: 30369845 [TBL] [Abstract][Full Text] [Related]
10. Fitness of three chemotypes of Fusarium graminearum species complex in major winter wheat-producing areas of China. Liu YY; Sun HY; Li W; Xia YL; Deng YY; Zhang AX; Chen HG PLoS One; 2017; 12(3):e0174040. PubMed ID: 28306726 [TBL] [Abstract][Full Text] [Related]
11. Production of mycotoxins by selected Fusarium graminearum and F. crookwellense isolates. Sydenham EW; Marasas WF; Thiel PG; Shephard GS; Nieuwenhuis JJ Food Addit Contam; 1991; 8(1):31-41. PubMed ID: 1826664 [TBL] [Abstract][Full Text] [Related]
12. Molecular Phylogenetic Relationships, Trichothecene Chemotype Diversity and Aggressiveness of Strains in a Global Collection of Amarasinghe C; Sharanowski B; Fernando WGD Toxins (Basel); 2019 May; 11(5):. PubMed ID: 31083494 [TBL] [Abstract][Full Text] [Related]
13. Trichothecene Genotype of Fusarium graminearum Isolates from Soybean (Glycine max) Seedling and Root Diseases in the United States. Ellis ML; Munkvold GP Plant Dis; 2014 Jul; 98(7):1012. PubMed ID: 30708932 [TBL] [Abstract][Full Text] [Related]
14. Molecular survey of trichothecene genotypes of Fusarium graminearum species complex from barley in southern Brazil. Astolfi P; dos Santos J; Schneider L; Gomes LB; Silva CN; Tessmann DJ; Del Ponte EM Int J Food Microbiol; 2011 Aug; 148(3):197-201. PubMed ID: 21665312 [TBL] [Abstract][Full Text] [Related]
15. Geographic Distribution of Trichothecene Chemotypes of the Fusarium graminearum Species Complex in Major Winter Wheat Production Areas of China. Shen CM; Hu YC; Sun HY; Li W; Guo JH; Chen HG Plant Dis; 2012 Aug; 96(8):1172-1178. PubMed ID: 30727056 [TBL] [Abstract][Full Text] [Related]
16. Polymorphism of trichothecene biosynthesis genes in deoxynivalenol- and nivalenol-producing Fusarium graminearum isolates. Kim HS; Lee T; Dawlatana M; Yun SH; Lee YW Mycol Res; 2003 Feb; 107(Pt 2):190-7. PubMed ID: 12747330 [TBL] [Abstract][Full Text] [Related]
17. Production of trichothecene mycotoxins by Fusarium graminearum and Fusarium culmorum on barley and wheat. Mirocha CJ; Xie W; Xu Y; Wilcoxson RD; Woodward RP; Etebarian RH; Behele G Mycopathologia; 1994 Oct; 128(1):19-23. PubMed ID: 7708088 [TBL] [Abstract][Full Text] [Related]
18. Genotyping and phenotyping of Fusarium graminearum isolates from Germany related to their mycotoxin biosynthesis. de Kuppler AL; Steiner U; Sulyok M; Krska R; Oerke EC Int J Food Microbiol; 2011 Nov; 151(1):78-86. PubMed ID: 21889226 [TBL] [Abstract][Full Text] [Related]
19. Trichothecene genotypes and chemotypes in Fusarium graminearum strains isolated from wheat in Argentina. Reynoso MM; Ramirez ML; Torres AM; Chulze SN Int J Food Microbiol; 2011 Feb; 145(2-3):444-8. PubMed ID: 21320729 [TBL] [Abstract][Full Text] [Related]
20. Comparative Analysis of Deoxynivalenol Biosynthesis Related Gene Expression among Different Chemotypes of Fusarium graminearum in Spring Wheat. Amarasinghe CC; Fernando WG Front Microbiol; 2016; 7():1229. PubMed ID: 27550207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]