BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20882501)

  • 1. Progress in the field of electrospinning for tissue engineering applications.
    Agarwal S; Wendorff JH; Greiner A
    Adv Mater; 2009 Sep; 21(32-33):3343-51. PubMed ID: 20882501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue Engineering in Neuroscience: Applications and Perspectives.
    Zhang X; Liu F; Gu Z
    BME Front; 2023; 4():0007. PubMed ID: 37849680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun nanofibers for regenerative medicine.
    Liu W; Thomopoulos S; Xia Y
    Adv Healthc Mater; 2012 Jan; 1(1):10-25. PubMed ID: 23184683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Color-Detectable Vitamin C Controlled-Release System Fabricated Using Electrospinning.
    Shin MJ
    Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyacrylonitrile nanofibrous mat from electrospinning: Born with potential anti-fungal functionality.
    Sirelkhatim N; Parveen A; LaJeunesse D; Yu D; Zhang L
    Eur Polym J; 2019 Oct; 119():176-180. PubMed ID: 38362526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances of polyolefins from fiber to nanofiber: fabrication and recent applications.
    Zakaria M; Bhuiyan MAR; Hossain MS; Khan NMU; Salam MA; Nakane K
    Discov Nano; 2024 Feb; 19(1):24. PubMed ID: 38321325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Piezoelectric-based bioactive zinc oxide-cellulose acetate electrospun mats for efficient wound healing: an
    Ghosh S; Vaidya S; More N; Velyutham R; Kapusetti G
    Front Immunol; 2023; 14():1245343. PubMed ID: 37849754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guided Tissue and Bone Regeneration Membranes: A Review of Biomaterials and Techniques for Periodontal Treatments.
    Alqahtani AM
    Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of Poly Lactic-co-glycolic Acid Nano and Micro Particles in the Delivery of Drugs Modulating Different Phases of Inflammation.
    Puricelli C; Gigliotti CL; Stoppa I; Sacchetti S; Pantham D; Scomparin A; Rolla R; Pizzimenti S; Dianzani U; Boggio E; Sutti S
    Pharmaceutics; 2023 Jun; 15(6):. PubMed ID: 37376219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated Manufacturing of Suspended and Aligned Nanofibrous Scaffold for Structural Maturation and Synchronous Contraction of HiPSC-Derived Cardiomyocytes.
    Liu L; Xu F; Jin H; Qiu B; Yang J; Zhang W; Gao Q; Lin B; Chen S; Sun D
    Bioengineering (Basel); 2023 Jun; 10(6):. PubMed ID: 37370633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Study on the Effect of Doping Metallic Nanoparticles on Fracture Properties of Polylactic Acid Nanofibres via Molecular Dynamics Simulation.
    Izadi R; Trovalusci P; Fantuzzi N
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofunctionalization and Applications of Polymeric Nanofibers in Tissue Engineering and Regenerative Medicine.
    Phutane P; Telange D; Agrawal S; Gunde M; Kotkar K; Pethe A
    Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing Antibiofilm Fibrillar Scaffold with Intrinsic Capacity to Produce Silver Nanoparticles.
    Pitarresi G; Barberi G; Palumbo FS; Schillaci D; Fiorica C; Catania V; Indelicato S; Bongiorno D; Biscari G; Giammona G
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial Cellulose Composites with Polysaccharides Filled with Nanosized Cerium Oxide: Characterization and Cytocompatibility Assessment.
    Petrova VA; Gofman IV; Golovkin AS; Mishanin AI; Dubashynskaya NV; Khripunov AK; Ivan'kova EM; Vlasova EN; Nikolaeva AL; Baranchikov AE; Skorik YA; Yakimansky AV; Ivanov VK
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Nanofiber Scaffolds with Biomimetic Cues for Differentiation of Skin-Derived Neural Crest-like Stem Cells to Schwann Cells.
    Podder AK; Mohamed MA; Tseropoulos G; Nasiri B; Andreadis ST
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibacterial agent-releasing scaffolds in dental tissue engineering.
    Gholami Z; Hasanpour S; Sadigh S; Johari S; Shahveghar Z; Ataei K; Javari E; Amani M; Javadi Kia L; Delir Akbari Z; Nazari Z; Maleki Dizaj S; Rezaei Y
    J Adv Periodontol Implant Dent; 2021; 13(1):43-47. PubMed ID: 35919917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comprehensive Review of Biopolymer Fabrication in Additive Manufacturing Processing for 3D-Tissue-Engineering Scaffolds.
    Arifin N; Sudin I; Ngadiman NHA; Ishak MSA
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35632000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electrospun poly(ε-caprolactone) nanocomposite fibrous mat with a high content of hydroxyapatite to promote cell infiltration.
    Li H; Huang C; Jin X; Ke Q
    RSC Adv; 2018 Jul; 8(44):25228-25235. PubMed ID: 35547952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the draw ratio and velocity of an electrically charged liquid jet during electrospinning.
    Ding C; Fang H; Duan G; Zou Y; Chen S; Hou H
    RSC Adv; 2019 Apr; 9(24):13608-13613. PubMed ID: 35519595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of sodium alginate-PVA polymeric scaffolds by electrospinning method for skin tissue engineering applications.
    Jadbabaei S; Kolahdoozan M; Naeimi F; Ebadi-Dehaghani H
    RSC Adv; 2021 Sep; 11(49):30674-30688. PubMed ID: 35479869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.