BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 20882595)

  • 1. Predicting the effect of tray malalignment on risk for bone damage and implant subsidence after total knee arthroplasty.
    Wong J; Steklov N; Patil S; Flores-Hernandez C; Kester M; Colwell CW; D'Lima DD
    J Orthop Res; 2011 Mar; 29(3):347-53. PubMed ID: 20882595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of varus/valgus malalignment on bone strains in the proximal tibia after TKR: an explicit finite element study.
    Perillo-Marcone A; Taylor M
    J Biomech Eng; 2007 Feb; 129(1):1-11. PubMed ID: 17227092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of bone-prosthesis interface micromotion for cementless tibial prosthesis fixation and the influence of loading conditions.
    Chong DY; Hansen UN; Amis AA
    J Biomech; 2010 Apr; 43(6):1074-80. PubMed ID: 20189576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patellar tracking after total knee arthroplasty. The effect of tibial tray malrotation and articular surface configuration.
    Nagamine R; Whiteside LA; White SE; McCarthy DS
    Clin Orthop Relat Res; 1994 Jul; (304):262-71. PubMed ID: 8020227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of bone resection depth and malalignment on strain in the proximal tibia after total knee arthroplasty.
    Berend ME; Small SR; Ritter MA; Buckley CA
    J Arthroplasty; 2010 Feb; 25(2):314-8. PubMed ID: 19346099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical bone strength of the tibial resection surface at increasing distance from the joint line in total knee arthroplasty.
    Chaput CD; Weeden SH; Hyman WA; Hitt KD
    J Surg Orthop Adv; 2004; 13(4):195-8. PubMed ID: 15691179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical evaluation of proximal tibia behaviour with the use of femoral stems in revision TKA: an in vitro and finite element analysis.
    Completo A; Rego A; Fonseca F; Ramos A; Relvas C; Simões JA
    Clin Biomech (Bristol, Avon); 2010 Feb; 25(2):159-65. PubMed ID: 19944503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ABJS Best Paper: Dynamic intraoperative ligament balancing for total knee arthroplasty.
    D'Lima DD; Patil S; Steklov N; Colwell CW
    Clin Orthop Relat Res; 2007 Oct; 463():208-12. PubMed ID: 17960684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress analysis of a condylar knee tibial component: influence of metaphyseal shell properties and cement injection depth.
    Cheal EJ; Hayes WC; Lee CH; Snyder BD; Miller J
    J Orthop Res; 1985; 3(4):424-34. PubMed ID: 4067701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Addition of a short central extension to surface cemented tibial trays in primary TKA: an in vitro study of the effect on initial fixation stability and its relationship to supporting bone density.
    Pérez-Blanca A; Prado M; Ezquerro F; Montañéz E; Espejo A
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):483-92. PubMed ID: 18171597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical background and clinical observations of rotational malalignment in TKA: literature review and consequences.
    Zihlmann MS; Stacoff A; Romero J; Quervain IK; Stüssi E
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):661-8. PubMed ID: 15961202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of three variables on the stresses in a three-dimensional model of a proximal tibia-total knee implant construct.
    Sarathi Kopparti P; Lewis G
    Biomed Mater Eng; 2007; 17(1):19-28. PubMed ID: 17264384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite Element Analysis of Mobile-bearing Unicompartmental Knee Arthroplasty: The Influence of Tibial Component Coronal Alignment.
    Zhu GD; Guo WS; Zhang QD; Liu ZH; Cheng LM
    Chin Med J (Engl); 2015 Nov; 128(21):2873-8. PubMed ID: 26521784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk factors for tibial implant malpositioning in total knee arthrosplasty-consecutive series of one thousand, four hundred and seventeen cases.
    Gaillard R; Cerciello S; Lustig S; Servien E; Neyret P
    Int Orthop; 2017 Apr; 41(4):749-756. PubMed ID: 27738829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of tibial component malalignment on bone strain in revision total knee replacement.
    Rastetter BR; Wright SJ; Gheduzzi S; Miles AW; Clift SE
    Proc Inst Mech Eng H; 2016 Jun; 230(6):561-8. PubMed ID: 27006420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A parametric analysis of fixation post shape in tibial knee prostheses.
    Au AG; Liggins AB; Raso VJ; Amirfazli A
    Med Eng Phys; 2005 Mar; 27(2):123-34. PubMed ID: 15642508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS
    J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical stability of well-functioning tibial baseplates from postmortem-retrieved total knee arthroplasties.
    Rao AS; Engh JA; Engh GA; Parks NL
    J Arthroplasty; 2010 Apr; 25(3):481-5. PubMed ID: 19195833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of varus tibial alignment on proximal tibial surface strain in total knee arthroplasty: The posteromedial hot spot.
    Green GV; Berend KR; Berend ME; Glisson RR; Vail TP
    J Arthroplasty; 2002 Dec; 17(8):1033-9. PubMed ID: 12478515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Custom-fit total knee arthroplasty (OtisKnee) results in malalignment.
    Klatt BA; Goyal N; Austin MS; Hozack WJ
    J Arthroplasty; 2008 Jan; 23(1):26-9. PubMed ID: 18165024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.