BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20882673)

  • 1. Transurethral prostate magnetic resonance elastography: prospective imaging requirements.
    Arani A; Plewes D; Chopra R
    Magn Reson Med; 2011 Feb; 65(2):340-9. PubMed ID: 20882673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo MR elastography of the prostate gland using a transurethral actuator.
    Chopra R; Arani A; Huang Y; Musquera M; Wachsmuth J; Bronskill M; Plewes D
    Magn Reson Med; 2009 Sep; 62(3):665-71. PubMed ID: 19572390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The feasibility of endorectal MR elastography for prostate cancer localization.
    Arani A; Plewes D; Krieger A; Chopra R
    Magn Reson Med; 2011 Dec; 66(6):1649-57. PubMed ID: 21574182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel technique for MR elastography of the prostate using a modified standard endorectal coil as actuator.
    Thörmer G; Reiss-Zimmermann M; Otto J; Hoffmann KT; Moche M; Garnov N; Kahn T; Busse H
    J Magn Reson Imaging; 2013 Jun; 37(6):1480-5. PubMed ID: 23055397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transperineal prostate MR elastography: initial in vivo results.
    Sahebjavaher RS; Baghani A; Honarvar M; Sinkus R; Salcudean SE
    Magn Reson Med; 2013 Feb; 69(2):411-20. PubMed ID: 22505273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity.
    Liu Y; Liu J; Fite BZ; Foiret J; Ilovitsh A; Leach JK; Dumont E; Caskey CF; Ferrara KW
    Phys Med Biol; 2017 May; 62(10):4083-4106. PubMed ID: 28426437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear wave elasticity imaging based on acoustic radiation force and optical detection.
    Cheng Y; Li R; Li S; Dunsby C; Eckersley RJ; Elson DS; Tang MX
    Ultrasound Med Biol; 2012 Sep; 38(9):1637-45. PubMed ID: 22749816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of nonlinear shear wave propagation using magnetic resonance elastography.
    Sack I; McGowan CK; Samani A; Luginbuhl C; Oakden W; Plewes DB
    Magn Reson Med; 2004 Oct; 52(4):842-50. PubMed ID: 15389935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporating endorectal MR elastography into multi-parametric MRI for prostate cancer imaging: Initial feasibility in volunteers.
    Arani A; Da Rosa M; Ramsay E; Plewes DB; Haider MA; Chopra R
    J Magn Reson Imaging; 2013 Nov; 38(5):1251-60. PubMed ID: 23408516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Influence of Vibration Waveform on MR Elastography].
    Tanaka M; Numano T; Habe T; Ito D; Maeno T; Ueki T; Igarashi K; Mizuhara K
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2019; 75(3):239-246. PubMed ID: 30890671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast tomoelastography of the mouse brain by multifrequency single-shot MR elastography.
    Bertalan G; Guo J; Tzschätzsch H; Klein C; Barnhill E; Sack I; Braun J
    Magn Reson Med; 2019 Apr; 81(4):2676-2687. PubMed ID: 30393887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Algebraic Helmholtz inversion in planar magnetic resonance elastography.
    Papazoglou S; Hamhaber U; Braun J; Sack I
    Phys Med Biol; 2008 Jun; 53(12):3147-58. PubMed ID: 18495979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of remote adaptive torsional shear waves with an octagonal phased array to enhance displacements and reduce variability of shear wave speeds: comparison with quasi-plane shear wavefronts.
    Ouared A; Montagnon E; Cloutier G
    Phys Med Biol; 2015 Oct; 60(20):8161-85. PubMed ID: 26439616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear Wave Speed Measurements Using Crawling Wave Sonoelastography and Single Tracking Location Shear Wave Elasticity Imaging for Tissue Characterization.
    Ormachea J; Lavarello RJ; McAleavey SA; Parker KJ; Castaneda B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1351-1360. PubMed ID: 27295662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Dimensional Time-Harmonic Elastography of the Human Liver and Spleen.
    Tzschätzsch H; Nguyen Trong M; Scheuermann T; Ipek-Ugay S; Fischer T; Schultz M; Braun J; Sack I
    Ultrasound Med Biol; 2016 Nov; 42(11):2562-2571. PubMed ID: 27567061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developments in dynamic MR elastography for in vitro biomechanical assessment of hyaline cartilage under high-frequency cyclical shear.
    Lopez O; Amrami KK; Manduca A; Rossman PJ; Ehman RL
    J Magn Reson Imaging; 2007 Feb; 25(2):310-20. PubMed ID: 17260392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo, high-frequency three-dimensional cardiac MR elastography: Feasibility in normal volunteers.
    Arani A; Glaser KL; Arunachalam SP; Rossman PJ; Lake DS; Trzasko JD; Manduca A; McGee KP; Ehman RL; Araoz PA
    Magn Reson Med; 2017 Jan; 77(1):351-360. PubMed ID: 26778442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tomoelastography of the prostate using multifrequency MR elastography and externally placed pressurized-air drivers.
    Dittmann F; Reiter R; Guo J; Haas M; Asbach P; Fischer T; Braun J; Sack I
    Magn Reson Med; 2018 Mar; 79(3):1325-1333. PubMed ID: 28585229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of strain and shear-wave elastography in an elasticity phantom.
    Carlsen JF; Pedersen MR; Ewertsen C; Săftoiu A; Lönn L; Rafaelsen SR; Nielsen MB
    AJR Am J Roentgenol; 2015 Mar; 204(3):W236-42. PubMed ID: 25714307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical analysis of an axially symmetric cylindrical phantom with a spherical heterogeneity for MR elastography.
    Schwartz BL; Yin Z; Magin RL
    Phys Med Biol; 2016 Sep; 61(18):6821-6832. PubMed ID: 27579850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.