These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20882938)

  • 1. Fabric dependence of bone ultrasound.
    Cowin SC; Cardoso L
    Acta Bioeng Biomech; 2010; 12(2):3-23. PubMed ID: 20882938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabric dependence of wave propagation in anisotropic porous media.
    Cowin SC; Cardoso L
    Biomech Model Mechanobiol; 2011 Feb; 10(1):39-65. PubMed ID: 20461539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabric dependence of quasi-waves in anisotropic porous media.
    Cardoso L; Cowin SC
    J Acoust Soc Am; 2011 May; 129(5):3302-16. PubMed ID: 21568431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the biot model to ultrasound in bone: direct problem.
    Fellah ZA; Sebaa N; Fellah M; Mitri FG; Ogam E; Lauriks W; Depollier C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1508-15. PubMed ID: 18986940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The correlation between the SOS in trabecular bone and stiffness and density studied by finite-element analysis.
    Goossens L; Vanderoost J; Jaecques S; Boonen S; D'hooge J; Lauriks W; Van der Perre G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1234-42. PubMed ID: 18599411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of mechanical and ultrasound elastic modulus of ovine tibial cortical bone.
    Grant CA; Wilson LJ; Langton C; Epari D
    Med Eng Phys; 2014 Jul; 36(7):869-74. PubMed ID: 24793408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes of elastic constants and anisotropy patterns in trabecular bone during disuse-induced bone loss assessed by poroelastic ultrasound.
    Cardoso L; Schaffler MB
    J Biomech Eng; 2015 Jan; 137(1):0110081-9. PubMed ID: 25412022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The measurement of broadband ultrasonic attenuation in cancellous bone--a review of the science and technology.
    Langton CM; Njeh CF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1546-54. PubMed ID: 18986945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared to Biot's and multiple scattering models.
    Mézière F; Muller M; Bossy E; Derode A
    Ultrasonics; 2014 Jul; 54(5):1146-54. PubMed ID: 24125533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound and the biomechanical competence of bone.
    Nicholson PF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1539-45. PubMed ID: 18986944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid volume fraction estimation of bone:marrow replica models using ultrasound transit time spectroscopy.
    Wille ML; Langton CM
    Ultrasonics; 2016 Feb; 65():329-37. PubMed ID: 26455950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of density, elasticity, and structure on ultrasound transmission through trabecular bone cylinders.
    Cavani F; Giavaresi G; Fini M; Bertoni L; de Terlizzi F; Barkmann R; Cane V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1465-72. PubMed ID: 18986935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-based estimation of quantitative ultrasound variables at the proximal femur.
    Dencks S; Barkmann R; Padilla F; Laugier P; Schmitz G; Glüer CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1304-15. PubMed ID: 18599418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between ultrasonic parameters and apparent trabecular bone elastic modulus: a numerical approach.
    Haïat G; Padilla F; Svrcekova M; Chevalier Y; Pahr D; Peyrin F; Laugier P; Zysset P
    J Biomech; 2009 Sep; 42(13):2033-9. PubMed ID: 19646703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of broadband ultrasound attenuation on the elastic anisotropy of trabecular bone.
    Han SM; Rho JY
    Proc Inst Mech Eng H; 1998; 212(3):223-7. PubMed ID: 9695641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a numerical cancellous bone model for finite-difference time-domain simulations of ultrasound propagation.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1219-33. PubMed ID: 18599410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods.
    Hosokawa A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e227-31. PubMed ID: 16844171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of structural anisotropy of biological tissues in poroelastic wave propagation.
    Cardoso L; Cowin SC
    Mech Mater; 2012 Jan; 44():174-188. PubMed ID: 22162897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is quantitative ultrasound dependent on bone structure? A reflection.
    Njeh CF; Fuerst T; Diessel E; Genant HK
    Osteoporos Int; 2001; 12(1):1-15. PubMed ID: 11305077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic wave propagation in cancellous and cortical bone: prediction of some experimental results by Biot's theory.
    Williams JL
    J Acoust Soc Am; 1992 Feb; 91(2):1106-12. PubMed ID: 1556311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.