These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 20882938)

  • 21. Bone mineral density, ultrasound velocity, and broadband attenuation predict mechanical properties of trabecular bone differently.
    Töyräs J; Nieminen MT; Kröger H; Jurvelin JS
    Bone; 2002 Oct; 31(4):503-7. PubMed ID: 12398947
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical simulation of the dependence of quantitative ultrasonic parameters on trabecular bone microarchitecture and elastic constants.
    Haïat G; Padilla F; Barkmann R; Gluer CC; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e289-94. PubMed ID: 16859726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The in vitro measurement of ultrasound in cancellous bone.
    Langton CM; Hodgskinson R
    Stud Health Technol Inform; 1997; 40():175-99. PubMed ID: 10168878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical simulation of wave propagation in cancellous bone.
    Padilla F; Bossy E; Haiat G; Jenson F; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e239-43. PubMed ID: 16859723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.
    Nguyen VH; Naili S
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):861-76. PubMed ID: 25099567
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An investigation of unique and shared gene effects on speed of sound and bone density using axial transmission quantitative ultrasound and DXA in twins.
    Knapp KM; Andrew T; MacGregor AJ; Blake GM; Fogelman I; Spector TD
    J Bone Miner Res; 2003 Aug; 18(8):1525-30. PubMed ID: 12929943
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrasonic wave propagation in trabecular bone predicted by the stratified model.
    Lin W; Qin YX; Rubin C
    Ann Biomed Eng; 2001 Sep; 29(9):781-90. PubMed ID: 11599586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bone properties as estimated by mineral density, ultrasound attenuation, and velocity.
    Töyräs J; Kröger H; Jurvelin JS
    Bone; 1999 Dec; 25(6):725-31. PubMed ID: 10593418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A phantom for quantitative ultrasound of trabecular bone.
    Clarke AJ; Evans JA; Truscott JG; Milner R; Smith MA
    Phys Med Biol; 1994 Oct; 39(10):1677-87. PubMed ID: 15551538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numerical and experimental study on the wave attenuation in bone--FDTD simulation of ultrasound propagation in cancellous bone.
    Nagatani Y; Mizuno K; Saeki T; Matsukawa M; Sakaguchi T; Hosoi H
    Ultrasonics; 2008 Nov; 48(6-7):607-12. PubMed ID: 18589470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrasound velocity of trabecular cubes reflects mainly bone density and elasticity.
    Hans D; Wu C; Njeh CF; Zhao S; Augat P; Newitt D; Link T; Lu Y; Majumdar S; Genant HK
    Calcif Tissue Int; 1999 Jan; 64(1):18-23. PubMed ID: 9868278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microarchitecture and bone quality in the human calcaneus: local variations of fabric anisotropy.
    Souzanchi MF; Palacio-Mancheno P; Borisov YA; Cardoso L; Cowin SC
    J Bone Miner Res; 2012 Dec; 27(12):2562-72. PubMed ID: 22807141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of structural anisotropy of cancellous bone on speed of ultrasonic fast waves in the bovine femur.
    Mizuno K; Matsukawa M; Otani T; Takada M; Mano I; Tsujimoto T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1480-7. PubMed ID: 18986937
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploration of trabecular bone nonlinear elasticity using time-of-flight modulation.
    Renaud G; Calle S; Remenieras JP; Defontaine M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1497-507. PubMed ID: 18986939
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone.
    Fellah M; Fellah ZE; Mitri FG; Ogam E; Depollier C
    J Acoust Soc Am; 2013 Apr; 133(4):1867-81. PubMed ID: 23556556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of the Biot model to ultrasound in bone: inverse problem.
    Sebaa N; Fellah ZA; Fellah M; Ogam E; Mitri FG; Depollier C; Lauriks W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1516-23. PubMed ID: 18986941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new quality of bone ultrasound research.
    Gluer CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1524-8. PubMed ID: 18986942
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The prospects of estimating trabecular bone tissue properties from the combination of ultrasound, dual-energy X-ray absorptiometry, microcomputed tomography, and microfinite element analysis.
    van Lenthe GH; van den Bergh JP; Hermus AR; Huiskes R
    J Bone Miner Res; 2001 Mar; 16(3):550-5. PubMed ID: 11277273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrasonic scattering from cancellous bone: a review.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1432-41. PubMed ID: 18986932
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro acoustic waves propagation in human and bovine cancellous bone.
    Cardoso L; Teboul F; Sedel L; Oddou C; Meunier A
    J Bone Miner Res; 2003 Oct; 18(10):1803-12. PubMed ID: 14584891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.