These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 20882939)

  • 1. Biomechanics of the brain for computer-integrated surgery.
    Miller K; Wittek A; Joldes G
    Acta Bioeng Biomech; 2010; 12(2):25-37. PubMed ID: 20882939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical modeling and computer simulation of the brain during neurosurgery.
    Miller K; Joldes GR; Bourantas G; Warfield SK; Hyde DE; Kikinis R; Wittek A
    Int J Numer Method Biomed Eng; 2019 Oct; 35(10):e3250. PubMed ID: 31400252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suite of meshless algorithms for accurate computation of soft tissue deformation for surgical simulation.
    Joldes G; Bourantas G; Zwick B; Chowdhury H; Wittek A; Agrawal S; Mountris K; Hyde D; Warfield SK; Miller K
    Med Image Anal; 2019 Aug; 56():152-171. PubMed ID: 31229760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time: application to non-rigid neuroimage registration.
    Wittek A; Joldes G; Couton M; Warfield SK; Miller K
    Prog Biophys Mol Biol; 2010 Dec; 103(2-3):292-303. PubMed ID: 20868706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian registration via local image regions: information, selection and marginalization.
    Toews M; Wells WM
    Inf Process Med Imaging; 2009; 21():435-46. PubMed ID: 19694283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A brain-deformation framework based on a linear elastic model and evaluation using clinical data.
    Zhang C; Wang M; Song Z
    IEEE Trans Biomed Eng; 2011 Jan; 58(1):191-9. PubMed ID: 20805048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of brain tissue in-vivo: experiment and computer simulation.
    Miller K; Chinzei K; Orssengo G; Bednarz P
    J Biomech; 2000 Nov; 33(11):1369-76. PubMed ID: 10940395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A non-rigid registration framework that accommodates resection and retraction.
    Risholm P; Samsett E; Talos IF; Wells W
    Inf Process Med Imaging; 2009; 21():447-58. PubMed ID: 19694284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D XFEM-based modeling of retraction for preoperative image update.
    Vigneron LM; Warfield SK; Robe PA; Verly JG
    Comput Aided Surg; 2011; 16(3):121-34. PubMed ID: 21476788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Framework for a low-cost intra-operative image-guided neuronavigator including brain shift compensation.
    Bucki M; Lobos C; Payan Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():872-5. PubMed ID: 18002095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical evaluation of a model-updated image-guidance approach to brain shift compensation: experience in 16 cases.
    Miga MI; Sun K; Chen I; Clements LW; Pheiffer TS; Simpson AL; Thompson RC
    Int J Comput Assist Radiol Surg; 2016 Aug; 11(8):1467-74. PubMed ID: 26476637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reduced order finite element algorithm for surgical simulation.
    Taylor ZA; Ourselin S; Crozier S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():239-42. PubMed ID: 21096959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraoperative image updating for brain shift following dural opening.
    Fan X; Roberts DW; Schaewe TJ; Ji S; Holton LH; Simon DA; Paulsen KD
    J Neurosurg; 2017 Jun; 126(6):1924-1933. PubMed ID: 27611206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo quantification of a homogeneous brain deformation model for updating preoperative images during surgery.
    Miga MI; Paulsen KD; Hoopes PJ; Kennedy FE; Hartov A; Roberts DW
    IEEE Trans Biomed Eng; 2000 Feb; 47(2):266-73. PubMed ID: 10721634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical modeling of the human head for physically based, nonrigid image registration.
    Hagemann A; Rohr K; Stiehl HS; Spetzger U; Gilsbach JM
    IEEE Trans Med Imaging; 1999 Oct; 18(10):875-84. PubMed ID: 10628947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of intraoperative brain shift by combination of stereovision and doppler ultrasound: phantom and animal model study.
    Mohammadi A; Ahmadian A; Azar AD; Sheykh AD; Amiri F; Alirezaie J
    Int J Comput Assist Radiol Surg; 2015 Nov; 10(11):1753-64. PubMed ID: 25958061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the unimportance of constitutive models in computing brain deformation for image-guided surgery.
    Wittek A; Hawkins T; Miller K
    Biomech Model Mechanobiol; 2009 Feb; 8(1):77-84. PubMed ID: 18246376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond finite elements: a comprehensive, patient-specific neurosurgical simulation utilizing a meshless method.
    Miller K; Horton A; Joldes GR; Wittek A
    J Biomech; 2012 Oct; 45(15):2698-701. PubMed ID: 22935689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling of fluid and elastic models for biomechanical simulations of brain deformations using FEM.
    Hagemann A; Rohr K; Stiehl HS
    Med Image Anal; 2002 Dec; 6(4):375-88. PubMed ID: 12426110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meshless algorithm for soft tissue cutting in surgical simulation.
    Jin X; Joldes GR; Miller K; Yang KH; Wittek A
    Comput Methods Biomech Biomed Engin; 2014 May; 17(7):800-11. PubMed ID: 22974246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.