BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20883442)

  • 1. Effects of CO(2) enrichment on photosynthesis, growth, and biochemical composition of seagrass Thalassia hemprichii (Ehrenb.) Aschers.
    Jiang ZJ; Huang XP; Zhang JP
    J Integr Plant Biol; 2010 Oct; 52(10):904-13. PubMed ID: 20883442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytotoxic effects of Cu, Cd and Zn on the seagrass Thalassia hemprichii and metal accumulation in plants growing in Xincun Bay, Hainan, China.
    Zheng J; Gu XQ; Zhang TJ; Liu HH; Ou QJ; Peng CL
    Ecotoxicology; 2018 Jul; 27(5):517-526. PubMed ID: 29556939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological responses of the seagrass Thalassia hemprichii (Ehrenb.) Aschers as indicators of nutrient loading.
    Zhang J; Huang X; Jiang Z
    Mar Pollut Bull; 2014 Jun; 83(2):508-15. PubMed ID: 24433998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limited toxicity of NH(x) pulses on an early and late successional tropical seagrass species: interactions with pH and light level.
    Christianen MJ; van der Heide T; Bouma TJ; Roelofs JG; van Katwijk MM; Lamers LP
    Aquat Toxicol; 2011 Jul; 104(1-2):73-9. PubMed ID: 21536012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses of a dominant temperate grassland plant (Leymus chinensis) to elevated carbon dioxide and nitrogen addition in China.
    Zhang L; Yang Y; Zhan X; Zhang C; Zhou S; Wu D
    J Environ Qual; 2010; 39(1):251-9. PubMed ID: 20048313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sand supplementation favors tropical seagrass Thalassia hemprichii in eutrophic bay: implications for seagrass restoration and management.
    Jiang Z; Liu S; Cui L; He J; Fang Y; Premarathne C; Li L; Wu Y; Huang X; Kumar M
    BMC Plant Biol; 2022 Jun; 22(1):296. PubMed ID: 35710355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inorganic Carbon Source for Photosynthesis in the Seagrass Thalassia hemprichii (Ehrenb.) Aschers.
    Abel KM
    Plant Physiol; 1984 Nov; 76(3):776-81. PubMed ID: 16663923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species.
    Ow YX; Vogel N; Collier CJ; Holtum JA; Flores F; Uthicke S
    Sci Rep; 2016 Mar; 6():23093. PubMed ID: 26976685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of elevated CO2 on clonal growth and nutrient content of submerge plant Vallisneria spinulosa.
    Yan X; Yu D; Li YK
    Chemosphere; 2006 Jan; 62(4):595-601. PubMed ID: 16083940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significance of belowground production to the long-term carbon sequestration of intertidal seagrass beds.
    Zou YF; Chen KY; Lin HJ
    Sci Total Environ; 2021 Dec; 800():149579. PubMed ID: 34399336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acidification alleviates the inhibition of hyposaline stress on physiological performance of tropical seagrass Thalassia hemprichii.
    Shi Z; Zhao M; Wang K; Ma S; Luo H; Han Q; Shi Y
    Mar Pollut Bull; 2024 Jun; 205():116642. PubMed ID: 38941803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth in elevated CO2 enhances temperature response of photosynthesis in wheat.
    Alonso A; Pérez P; Martínez-Carrasco R
    Physiol Plant; 2009 Feb; 135(2):109-20. PubMed ID: 19055543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal change in the balance between capacities of RuBP carboxylation and RuBP regeneration affects CO2 response of photosynthesis in Polygonum cuspidatum.
    Onoda Y; Hikosaka K; Hirose T
    J Exp Bot; 2005 Feb; 56(412):755-63. PubMed ID: 15596479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea.
    Liu S; Jiang Z; Zhang J; Wu Y; Lian Z; Huang X
    Mar Pollut Bull; 2016 Sep; 110(1):274-280. PubMed ID: 27334726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Illumina-based analysis the microbial diversity associated with Thalassia hemprichii in Xincun Bay, South China Sea.
    Jiang YF; Ling J; Dong JD; Chen B; Zhang YY; Zhang YZ; Wang YS
    Ecotoxicology; 2015 Oct; 24(7-8):1548-56. PubMed ID: 26092035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overview of the physiological ecology of carbon metabolism in seagrasses.
    Touchette BW; Burkholder JM
    J Exp Mar Biol Ecol; 2000 Jul; 250(1-2):169-205. PubMed ID: 10969168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal and spatial variations of air-sea CO
    Liu S; Liang J; Jiang Z; Li J; Wu Y; Fang Y; Ren Y; Zhang X; Huang X; Macreadie PI
    Sci Total Environ; 2024 Feb; 910():168684. PubMed ID: 37981158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrasting root length, nutrient content and carbon sequestration of seagrass growing in offshore carbonate and onshore terrigenous sediments in the South China Sea.
    Jiang Z; Zhao C; Yu S; Liu S; Cui L; Wu Y; Fang Y; Huang X
    Sci Total Environ; 2019 Apr; 662():151-159. PubMed ID: 30690350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of four Indo-West Pacific seagrass species to shading.
    Collier CJ; Waycott M; Ospina AG
    Mar Pollut Bull; 2012; 65(4-9):342-54. PubMed ID: 21741666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different strategies of nitrogen acquisition in two tropical seagrasses under nitrogen enrichment.
    Viana IG; Saavedra-Hortúa DA; Mtolera M; Teichberg M
    New Phytol; 2019 Aug; 223(3):1217-1229. PubMed ID: 31059120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.