These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 20883494)

  • 61. Understanding the granulation process of activated sludge in a biological phosphorus removal sequencing batch reactor.
    Wu CY; Peng YZ; Wang RD; Zhou YX
    Chemosphere; 2012 Feb; 86(8):767-73. PubMed ID: 22130123
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Anaerobic glyoxylate cycle activity during simultaneous utilization of glycogen and acetate in uncultured Accumulibacter enriched in enhanced biological phosphorus removal communities.
    Burow LC; Mabbett AN; Blackall LL
    ISME J; 2008 Oct; 2(10):1040-51. PubMed ID: 18784756
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Bacteriophage-host interaction in the enhanced biological phosphate removing activated sludge system.
    Khan MA; Satoh H; Mino T; Katayama H; Kurisu F; Matsuo T
    Water Sci Technol; 2002; 46(1-2):39-43. PubMed ID: 12216656
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms.
    Kishida N; Kim J; Tsuneda S; Sudo R
    Water Res; 2006 Jul; 40(12):2303-10. PubMed ID: 16766009
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Polyphosphate kinase genes from activated sludge carrying out enhanced biological phosphorus removal.
    McMahon KD; Jenkins D; Keasling JD
    Water Sci Technol; 2002; 46(1-2):155-62. PubMed ID: 12216617
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Monitoring associations between clade-level variation, overall community structure and ecosystem function in enhanced biological phosphorus removal (EBPR) systems using terminal-restriction fragment length polymorphism (T-RFLP).
    Slater FR; Johnson CR; Blackall LL; Beiko RG; Bond PL
    Water Res; 2010 Sep; 44(17):4908-23. PubMed ID: 20701946
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effect of pH on phosphine production and the fate of phosphorus during anaerobic process with granular sludge.
    Ding L; Wang X; Zhu Y; Edwards M; Glindemann D; Ren H
    Chemosphere; 2005 Mar; 59(1):49-54. PubMed ID: 15698643
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Influence of carbon source on nutrient removal performance and physical-chemical characteristics of aerobic granular sludge.
    Lashkarizadeh M; Yuan Q; Oleszkiewicz JA
    Environ Technol; 2015; 36(17):2161-7. PubMed ID: 25719420
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Microbiology of 'Candidatus Accumulibacter' in activated sludge.
    He S; McMahon KD
    Microb Biotechnol; 2011 Sep; 4(5):603-19. PubMed ID: 21338476
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Metatranscriptomic insights on gene expression and regulatory controls in Candidatus Accumulibacter phosphatis.
    Oyserman BO; Noguera DR; del Rio TG; Tringe SG; McMahon KD
    ISME J; 2016 Apr; 10(4):810-22. PubMed ID: 26555245
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Physical enrichment of uncultured Accumulibacter and Nitrospira from activated sludge by unlabeled cell sorting technique.
    Irie K; Fujitani H; Tsuneda S
    J Biosci Bioeng; 2016 Oct; 122(4):475-81. PubMed ID: 27094955
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The role of extracellular exopolymers in the removal of phosphorus from activated sludge.
    Cloete TE; Oosthuizen DJ
    Water Res; 2001 Oct; 35(15):3595-8. PubMed ID: 11561619
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Production of nonulosonic acids in the extracellular polymeric substances of "Candidatus Accumulibacter phosphatis".
    Tomás-Martínez S; Kleikamp HBC; Neu TR; Pabst M; Weissbrodt DG; van Loosdrecht MCM; Lin Y
    Appl Microbiol Biotechnol; 2021 Apr; 105(8):3327-3338. PubMed ID: 33791836
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Towards exposure of elusive metabolic mixed-culture processes: the application of metaproteomic analyses to activated sludge.
    Wilmes P; Bond PL
    Water Sci Technol; 2006; 54(1):217-26. PubMed ID: 16898155
    [TBL] [Abstract][Full Text] [Related]  

  • 75. An effective titanium salt dosing strategy for phosphorus removal from wastewater: Synergistic enhancement of chemical and biological treatment.
    Jia Y; Zeng W; Fan Z; Meng Q; Liu H; Peng Y
    Sci Total Environ; 2022 Oct; 842():156960. PubMed ID: 35760169
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Bacteriophages isolated from activated sludge processes and their polyvalency.
    Khan MA; Satoh H; Katayama H; Kurisu F; Mino T
    Water Res; 2002 Jul; 36(13):3364-70. PubMed ID: 12188136
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Denitrification capabilities of two biological phosphorus removal sludges dominated by different "Candidatus Accumulibacter" clades.
    Flowers JJ; He S; Yilmaz S; Noguera DR; McMahon KD
    Environ Microbiol Rep; 2009 Dec; 1(6):583-588. PubMed ID: 20808723
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The use of bacteriophage as tracers of aerosols liberated by sludge suction appliances.
    Wheeler D; Skilton HE; Carroll RF
    J Appl Bacteriol; 1988 Nov; 65(5):377-86. PubMed ID: 3069827
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Novel application of bacteriophage for controlling foaming in wastewater treatment plant- an eco-friendly approach.
    Khairnar K; Chandekar R; Nair A; Pal P; Paunikar WN
    Bioengineered; 2016; 7(1):46-9. PubMed ID: 26890996
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Technique for determining total bacterial virus counts in complex aqueous systems.
    Ewert DL; Paynter MJ
    Appl Environ Microbiol; 1980 Jan; 39(1):253-60. PubMed ID: 6986849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.