These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 20883665)
1. Correlated AFM and NanoSIMS imaging to probe cholesterol-induced changes in phase behavior and non-ideal mixing in ternary lipid membranes. Anderton CR; Lou K; Weber PK; Hutcheon ID; Kraft ML Biochim Biophys Acta; 2011 Jan; 1808(1):307-15. PubMed ID: 20883665 [TBL] [Abstract][Full Text] [Related]
2. Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study. Lin WC; Blanchette CD; Ratto TV; Longo ML Biophys J; 2006 Jan; 90(1):228-37. PubMed ID: 16214871 [TBL] [Abstract][Full Text] [Related]
3. The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes. Yuan C; Furlong J; Burgos P; Johnston LJ Biophys J; 2002 May; 82(5):2526-35. PubMed ID: 11964241 [TBL] [Abstract][Full Text] [Related]
4. Nanoscopic lipid domain dynamics revealed by atomic force microscopy. Tokumasu F; Jin AJ; Feigenson GW; Dvorak JA Biophys J; 2003 Apr; 84(4):2609-18. PubMed ID: 12668469 [TBL] [Abstract][Full Text] [Related]
5. Real-time analysis of the effects of cholesterol on lipid raft behavior using atomic force microscopy. Lawrence JC; Saslowsky DE; Edwardson JM; Henderson RM Biophys J; 2003 Mar; 84(3):1827-32. PubMed ID: 12609884 [TBL] [Abstract][Full Text] [Related]
6. High-resolution mapping and recognition of lipid domains using AFM with toxin-derivatized probes. Dumitru AC; Conrard L; Lo Giudice C; Henriet P; Veiga-da-Cunha M; Derclaye S; Tyteca D; Alsteens D Chem Commun (Camb); 2018 Jun; 54(50):6903-6906. PubMed ID: 29808215 [TBL] [Abstract][Full Text] [Related]
7. Ethanol effects on binary and ternary supported lipid bilayers with gel/fluid domains and lipid rafts. Marquês JT; Viana AS; De Almeida RF Biochim Biophys Acta; 2011 Jan; 1808(1):405-14. PubMed ID: 20955684 [TBL] [Abstract][Full Text] [Related]
8. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. Crane JM; Tamm LK Biophys J; 2004 May; 86(5):2965-79. PubMed ID: 15111412 [TBL] [Abstract][Full Text] [Related]
9. Temperature induced lipid membrane restructuring and changes in nanomechanics. Bhojoo U; Chen M; Zou S Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):700-709. PubMed ID: 29248477 [TBL] [Abstract][Full Text] [Related]
10. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes. Wiśniewska A; Draus J; Subczynski WK Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369 [TBL] [Abstract][Full Text] [Related]
11. Use of cyclodextrin for AFM monitoring of model raft formation. Giocondi MC; Milhiet PE; Dosset P; Le Grimellec C Biophys J; 2004 Feb; 86(2):861-9. PubMed ID: 14747321 [TBL] [Abstract][Full Text] [Related]
12. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy. Geisse NA; Cover TL; Henderson RM; Edwardson JM Biochem J; 2004 Aug; 381(Pt 3):911-7. PubMed ID: 15128269 [TBL] [Abstract][Full Text] [Related]
13. Atomic force microscopy of nanometric liposome adsorption and nanoscopic membrane domain formation. Tokumasu F; Jin AJ; Feigenson GW; Dvorak JA Ultramicroscopy; 2003; 97(1-4):217-27. PubMed ID: 12801674 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures. Bunge A; Müller P; Stöckl M; Herrmann A; Huster D Biophys J; 2008 Apr; 94(7):2680-90. PubMed ID: 18178660 [TBL] [Abstract][Full Text] [Related]
15. Galactosylceramide domain microstructure: impact of cholesterol and nucleation/growth conditions. Blanchette CD; Lin WC; Ratto TV; Longo ML Biophys J; 2006 Jun; 90(12):4466-78. PubMed ID: 16565044 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy. Shaw JE; Alattia JR; Verity JE; Privé GG; Yip CM J Struct Biol; 2006 Apr; 154(1):42-58. PubMed ID: 16459101 [TBL] [Abstract][Full Text] [Related]
17. Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS. Chiantia S; Kahya N; Ries J; Schwille P Biophys J; 2006 Jun; 90(12):4500-8. PubMed ID: 16565041 [TBL] [Abstract][Full Text] [Related]
18. AFM surface morphology and friction force studies of microscale domain structures of binary phospholipids. Oguchi T; Sakai K; Sakai H; Abe M Colloids Surf B Biointerfaces; 2010 Aug; 79(1):205-9. PubMed ID: 20439152 [TBL] [Abstract][Full Text] [Related]
19. Atomic Force Microscopy Imaging and Force Spectroscopy of Supported Lipid Bilayers. Unsay JD; Cosentino K; García-Sáez AJ J Vis Exp; 2015 Jul; (101):e52867. PubMed ID: 26273958 [TBL] [Abstract][Full Text] [Related]
20. Macroscopic and Nanoscopic Heterogeneous Structures in a Three-Component Lipid Bilayer Mixtures Determined by Atomic Force Microscopy. Khadka NK; Ho CS; Pan J Langmuir; 2015 Nov; 31(45):12417-25. PubMed ID: 26506226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]