These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 20883732)
1. Transcriptional analysis of catabolite repression in Clostridium acetobutylicum growing on mixtures of D-glucose and D-xylose. Grimmler C; Held C; Liebl W; Ehrenreich A J Biotechnol; 2010 Nov; 150(3):315-23. PubMed ID: 20883732 [TBL] [Abstract][Full Text] [Related]
2. Elimination of carbon catabolite repression in Clostridium acetobutylicum--a journey toward simultaneous use of xylose and glucose. Bruder M; Moo-Young M; Chung DA; Chou CP Appl Microbiol Biotechnol; 2015 Sep; 99(18):7579-88. PubMed ID: 25981995 [TBL] [Abstract][Full Text] [Related]
3. Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli. Gu Y; Li J; Zhang L; Chen J; Niu L; Yang Y; Yang S; Jiang W J Biotechnol; 2009 Sep; 143(4):284-7. PubMed ID: 19695296 [TBL] [Abstract][Full Text] [Related]
4. Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. Xiao H; Gu Y; Ning Y; Yang Y; Mitchell WJ; Jiang W; Yang S Appl Environ Microbiol; 2011 Nov; 77(22):7886-95. PubMed ID: 21926197 [TBL] [Abstract][Full Text] [Related]
5. Pleiotropic functions of catabolite control protein CcpA in Butanol-producing Clostridium acetobutylicum. Ren C; Gu Y; Wu Y; Zhang W; Yang C; Yang S; Jiang W BMC Genomics; 2012 Jul; 13():349. PubMed ID: 22846451 [TBL] [Abstract][Full Text] [Related]
6. Improvement of solvent production from xylose mother liquor by engineering the xylose metabolic pathway in Clostridium acetobutylicum EA 2018. Li Z; Xiao H; Jiang W; Jiang Y; Yang S Appl Biochem Biotechnol; 2013 Oct; 171(3):555-68. PubMed ID: 23949683 [TBL] [Abstract][Full Text] [Related]
7. Shotgun proteomic monitoring of Clostridium acetobutylicum during stationary phase of butanol fermentation using xylose and comparison with the exponential phase. Sivagnanam K; Raghavan VG; Shah M; Hettich RL; Verberkmoes NC; Lefsrud MG J Ind Microbiol Biotechnol; 2012 Jun; 39(6):949-55. PubMed ID: 22395897 [TBL] [Abstract][Full Text] [Related]
8. Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Alsaker KV; Paredes C; Papoutsakis ET Biotechnol Bioeng; 2010 Apr; 105(6):1131-47. PubMed ID: 19998280 [TBL] [Abstract][Full Text] [Related]
9. Solvents Production from a Mixture of Glucose and Xylose by Mixed Fermentation of Clostridium acetobutylicum and Saccharomyces cerevisiae. Qi GX; Xiong L; Huang C; Chen XF; Lin XQ; Chen XD Appl Biochem Biotechnol; 2015 Oct; 177(4):996-1002. PubMed ID: 26265395 [TBL] [Abstract][Full Text] [Related]
10. Homo-D-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum. Yoshida S; Okano K; Tanaka T; Ogino C; Kondo A Appl Microbiol Biotechnol; 2011 Oct; 92(1):67-76. PubMed ID: 21643702 [TBL] [Abstract][Full Text] [Related]
11. Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield. Mao S; Luo Y; Zhang T; Li J; Bao G; Zhu Y; Chen Z; Zhang Y; Li Y; Ma Y J Proteome Res; 2010 Jun; 9(6):3046-61. PubMed ID: 20426490 [TBL] [Abstract][Full Text] [Related]
12. Molecular modulation of pleiotropic regulator CcpA for glucose and xylose coutilization by solvent-producing Clostridium acetobutylicum. Wu Y; Yang Y; Ren C; Yang C; Yang S; Gu Y; Jiang W Metab Eng; 2015 Mar; 28():169-179. PubMed ID: 25637046 [TBL] [Abstract][Full Text] [Related]
13. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. Kuyper M; Hartog MM; Toirkens MJ; Almering MJ; Winkler AA; van Dijken JP; Pronk JT FEMS Yeast Res; 2005 Feb; 5(4-5):399-409. PubMed ID: 15691745 [TBL] [Abstract][Full Text] [Related]
15. Contributions of XylR CcpA and cre to diauxic growth of Bacillus megaterium and to xylose isomerase expression in the presence of glucose and xylose. Schmiedel D; Hillen W Mol Gen Genet; 1996 Feb; 250(3):259-66. PubMed ID: 8602140 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome profile of carbon catabolite repression in an efficient l-(+)-lactic acid-producing bacterium Enterococcus mundtii QU25 grown in media with combinations of cellobiose, xylose, and glucose. Shiwa Y; Fujiwara H; Numaguchi M; Abdel-Rahman MA; Nabeta K; Kanesaki Y; Tashiro Y; Zendo T; Tanaka N; Fujita N; Yoshikawa H; Sonomoto K; Shimizu-Kadota M PLoS One; 2020; 15(11):e0242070. PubMed ID: 33201910 [TBL] [Abstract][Full Text] [Related]
17. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose. Yu L; Xu M; Tang IC; Yang ST Biotechnol Bioeng; 2015 Oct; 112(10):2134-41. PubMed ID: 25894463 [TBL] [Abstract][Full Text] [Related]
18. Improving the fermentation performance of Clostridium acetobutylicum ATCC 824 by strengthening the VB1 biosynthesis pathway. Liao Z; Suo Y; Xue C; Fu H; Wang J Appl Microbiol Biotechnol; 2018 Sep; 102(18):8107-8119. PubMed ID: 29987383 [TBL] [Abstract][Full Text] [Related]
19. Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum. Ren C; Gu Y; Hu S; Wu Y; Wang P; Yang Y; Yang C; Yang S; Jiang W Metab Eng; 2010 Sep; 12(5):446-54. PubMed ID: 20478391 [TBL] [Abstract][Full Text] [Related]
20. The Phosphotransferase System in Solventogenic Clostridia. Mitchell WJ J Mol Microbiol Biotechnol; 2015; 25(2-3):129-42. PubMed ID: 26159074 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]