BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 20884173)

  • 21. Top-down attention based on object representation and incremental memory for knowledge building and inference.
    Kim B; Ban SW; Lee M
    Neural Netw; 2013 Oct; 46():9-22. PubMed ID: 23624577
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real-time tracking of visually attended objects in virtual environments and its application to LOD.
    Lee S; Kim GJ; Choi S
    IEEE Trans Vis Comput Graph; 2009; 15(1):6-19. PubMed ID: 19008552
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selecting and ignoring salient objects within and across dimensions in visual search.
    Schubö A; Müller HJ
    Brain Res; 2009 Aug; 1283():84-101. PubMed ID: 19501066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of context in object recognition.
    Oliva A; Torralba A
    Trends Cogn Sci; 2007 Dec; 11(12):520-7. PubMed ID: 18024143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrated contextual representation for objects' identities and their locations.
    Gronau N; Neta M; Bar M
    J Cogn Neurosci; 2008 Mar; 20(3):371-88. PubMed ID: 18004950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stereo saliency map considering affective factors and selective motion analysis in a dynamic environment.
    Jeong S; Ban SW; Lee M
    Neural Netw; 2008 Dec; 21(10):1420-30. PubMed ID: 19013756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Salience of the lambs: a test of the saliency map hypothesis with pictures of emotive objects.
    Humphrey K; Underwood G; Lambert T
    J Vis; 2012 Jan; 12(1):. PubMed ID: 22279240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational modelling of visual attention.
    Itti L; Koch C
    Nat Rev Neurosci; 2001 Mar; 2(3):194-203. PubMed ID: 11256080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A model for learning topographically organized parts-based representations of objects in visual cortex: topographic nonnegative matrix factorization.
    Hosoda K; Watanabe M; Wersing H; Körner E; Tsujino H; Tamura H; Fujita I
    Neural Comput; 2009 Sep; 21(9):2605-33. PubMed ID: 19548799
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Is attention necessary for object identification? Evidence from eye movements during the inspection of real-world scenes.
    Underwood G; Templeman E; Lamming L; Foulsham T
    Conscious Cogn; 2008 Mar; 17(1):159-70. PubMed ID: 17222564
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acquisition of nonlinear forward optics in generative models: two-stage "downside-up" learning for occluded vision.
    Tajima S; Watanabe M
    Neural Netw; 2011 Mar; 24(2):148-58. PubMed ID: 21094592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Guidance of attention to objects and locations by long-term memory of natural scenes.
    Becker MW; Rasmussen IP
    J Exp Psychol Learn Mem Cogn; 2008 Nov; 34(6):1325-38. PubMed ID: 18980397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A semi-automated approach to balancing of bottom-up salience for predicting change detection performance.
    Verma M; McOwan PW
    J Vis; 2010 Jun; 10(6):3. PubMed ID: 20884552
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automatic computation of an image's statistical surprise predicts performance of human observers on a natural image detection task.
    Mundhenk TN; Einhäuser W; Itti L
    Vision Res; 2009 Jun; 49(13):1620-37. PubMed ID: 19351543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sources of top-down control in visual search.
    Weidner R; Krummenacher J; Reimann B; Müller HJ; Fink GR
    J Cogn Neurosci; 2009 Nov; 21(11):2100-13. PubMed ID: 19199412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A computational framework for attentional object discovery in RGB-D videos.
    Martín García G; Pavel M; Frintrop S
    Cogn Process; 2017 May; 18(2):169-182. PubMed ID: 28154991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid Extraction of the Spatial Distribution of Physical Saliency and Semantic Informativeness from Natural Scenes in the Human Brain.
    Kiat JE; Hayes TR; Henderson JM; Luck SJ
    J Neurosci; 2022 Jan; 42(1):97-108. PubMed ID: 34750229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Age-related changes in object processing and contextual binding revealed using fMR adaptation.
    Chee MW; Goh JO; Venkatraman V; Tan JC; Gutchess A; Sutton B; Hebrank A; Leshikar E; Park D
    J Cogn Neurosci; 2006 Apr; 18(4):495-507. PubMed ID: 16768356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Behavioral and neuroimaging evidence for a contribution of color and texture information to scene classification in a patient with visual form agnosia.
    Steeves JK; Humphrey GK; Culham JC; Menon RS; Milner AD; Goodale MA
    J Cogn Neurosci; 2004; 16(6):955-65. PubMed ID: 15298783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A neural model of the temporal dynamics of figure-ground segregation in motion perception.
    Raudies F; Neumann H
    Neural Netw; 2010 Mar; 23(2):160-76. PubMed ID: 19931405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.