These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 208842)

  • 1. An intramolecularly quenched fluorescent tripeptide as a fluorogenic substrate of angiotensin-I-converting enzyme and of bacterial dipeptidyl carboxypeptidase.
    Carmel A; Yaron A
    Eur J Biochem; 1978 Jun; 87(2):265-73. PubMed ID: 208842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of intramolecularly quenched fluorescent peptides as substrates of angiotensin-converting enzyme 2.
    Yan ZH; Ren KJ; Wang Y; Chen S; Brock TA; Rege AA
    Anal Biochem; 2003 Jan; 312(2):141-7. PubMed ID: 12531198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internally quenched fluorogenic substrates for angiotensin I-converting enzyme.
    Araujo MC; Melo RI; Del Nery E; Alves MF; Juliano MA; Casarini DE; Juliano L; Carmona AK
    J Hypertens; 1999 May; 17(5):665-72. PubMed ID: 10403610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate specificity and kinetic characteristics of angiotensin converting enzyme.
    Bünning P; Holmquist B; Riordan JF
    Biochemistry; 1983 Jan; 22(1):103-10. PubMed ID: 6299330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carboxypeptidase A hydrolyses benzoylglycyl-histidyl-leucine but not furylacryloyl-phenylalanyl-glycyl-glycine, two usual substrates for angiotensin I-converting enzyme.
    Baudin B; Giboudeau J
    Enzyme Protein; 1994-1995; 48(2):81-9. PubMed ID: 7581746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorimetric determination of dipeptidyl carboxypeptidase. (angiotensin-I-converting enzyme).
    Depierre D; Roth M
    Enzyme; 1975; 19(2):65-70. PubMed ID: 165929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tripeptidyl carboxypeptidase activity of kininase II (angiotensin-converting enzyme).
    Inokuchi J; Nagamatsu A
    Biochim Biophys Acta; 1981 Dec; 662(2):300-7. PubMed ID: 6274413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiotensin-converting enzyme: I. New strategies for assay.
    Ryan JW; Chung A; Ryan US
    Environ Health Perspect; 1980 Apr; 35():165-70. PubMed ID: 6250809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorogenic substrates for bacterial aminopeptidase P and its analogs detected in human serum and calf lung.
    Fleminger G; Carmel A; Goldenberg D; Yaron A
    Eur J Biochem; 1982 Jul; 125(3):609-15. PubMed ID: 6749499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of new peptide inhibitors on the ratio of angiotensin I-converting and kinin-degrading activities of dipeptidyl carboxypeptidase (angiotensin-converting enzyme).
    Kalinina EV; Posdnev VF; Komissarova NV; Gomazkov OA
    Biochemistry (Mosc); 1997 Mar; 62(3):247-50. PubMed ID: 9275297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An angiotensin converting enzyme inhibitor is a tight-binding slow substrate of carboxypeptidase A.
    Martin MT; Holmquist B; Riordan JF
    J Inorg Biochem; 1989 May; 36(1):39-50. PubMed ID: 2746220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fluorescent oligopeptide energy transfer assay with broad applications for neutral proteases.
    Ng M; Auld DS
    Anal Biochem; 1989 Nov; 183(1):50-6. PubMed ID: 2559628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel activity of human angiotensin I converting enzyme: release of the NH2- and COOH-terminal tripeptides from the luteinizing hormone-releasing hormone.
    Skidgel RA; Erdös EG
    Proc Natl Acad Sci U S A; 1985 Feb; 82(4):1025-9. PubMed ID: 2983326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate binding properties of converting enzyme using a series of p-nitrophenylalanyl derivatives of angiotensin I.
    Massey TH; Fessler DC
    Biochemistry; 1976 Nov; 15(22):4906-12. PubMed ID: 186098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptidase specificity characterization of C- and N-terminal catalytic sites of angiotensin I-converting enzyme.
    Araujo MC; Melo RL; Cesari MH; Juliano MA; Juliano L; Carmona AK
    Biochemistry; 2000 Jul; 39(29):8519-25. PubMed ID: 10913258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angiotensin-converting enzyme-2 (ACE2): comparative modeling of the active site, specificity requirements, and chloride dependence.
    Guy JL; Jackson RM; Acharya KR; Sturrock ED; Hooper NM; Turner AJ
    Biochemistry; 2003 Nov; 42(45):13185-92. PubMed ID: 14609329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carboxyl-terminal tripeptidyl hydrolysis of substance P by purified rabbit lung angiotensin-converting enzyme and the potentiation of substance P activity in vivo by captopril and MK-422.
    Cascieri MA; Bull HG; Mumford RA; Patchett AA; Thornberry NA; Liang T
    Mol Pharmacol; 1984 Mar; 25(2):287-93. PubMed ID: 6199659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of digestion of bradykinin and lysylbradykinin (kallidin) in human serum. Role of carboxypeptidase, angiotensin-converting enzyme and determination of final degradation products.
    Sheikh IA; Kaplan AP
    Biochem Pharmacol; 1989 Mar; 38(6):993-1000. PubMed ID: 2539165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coumarin-Ser-Asp-Lys-Pro-OH, a fluorescent substrate for determination of angiotensin-converting enzyme activity via high-performance liquid chromatography.
    Cheviron N; Rousseau-Plasse A; Lenfant M; Adeline MT; Potier P; Thierry J
    Anal Biochem; 2000 Apr; 280(1):58-64. PubMed ID: 10805521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fluorogenic substrate for angiotensin-converting enzyme in plasma.
    Russo FS; Persson AV; Wilson IB
    Clin Chem; 1978 Sep; 24(9):1539-42. PubMed ID: 210982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.